Leading and Trailing LightOJ - 1282 (取数的前三位和后三位)
题意:
求n的k次方的前三位 和 后三位 。。。刚开始用 Java的大数写的。。。果然超时。。。
好吧 这题用快速幂取模求后三位 然后用一个技巧求前三位 。。。orz。。。
任何一个数n均可以表示为10a, 其中 a 可以为小数
那么nk 可以表示为10ak , 令ak == x + y (其中x为整数 y为小数) 所以 ak - x == y
fmod(x,1)可以返回x的小数部分 所以y = fmod(ak,1)
/*由于x是整数,那么很明显他是用来指定位数的,因为10x肯定是一个10, 100, 1000...之类的数字,也就是说10y才是这个数字的有效部分,我们只要求出10y,然后乘上100最终结果就是我们想要的。
因为n = 10a 所以 a = log10(n),10y就是小数部分,我们用函数fmod(x, 1),返回x的小数部分,然后乘上100即可*/
fmod返回的是y的值,所以必须计算10y才是真实值,所以直接使用102 * 10y 即pow(10, 2 + y);
因为10y是整数一位的小数 所以要乘100
代码如下:
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000
#define LL long long
#define ULL unsigned long long
#define maxn 100009
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
LL qpow(LL a,LL b)
{
LL res = ;
while(b)
{
if(b & ) res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
} int main()
{
int T;
int cnt = ;
cin>> T;
while(T--)
{
int n, k;
cin>> n >> k; int res = pow(, + fmod(k * log10(n), )); printf("Case %d: %d %03d\n",++cnt,res,qpow(n,k)); } return ;
}
Leading and Trailing LightOJ - 1282 (取数的前三位和后三位)的更多相关文章
- Leading and Trailing LightOJ - 1282 题解
LightOJ - 1282 Leading and Trailing 题解 纵有疾风起 题目大意 题意:给你一个数n,让你求这个数的k次方的前三位和最后三位. \(2<=n<2^{31} ...
- D - Leading and Trailing LightOJ - 1282
题解:求n^k的前三位和后三位. 后三位直接快速幂对1000去余就可以了.前三位可以转换成浮点数来操作,也是用快速幂,我们只保留答案的前三位,当前值大于1000.0的话就除以10,直到结果小于等于10 ...
- 1282 - Leading and Trailing 求n^k的前三位和后三位。
1282 - Leading and Trailing You are given two integers: n and k, your task is to find the most signi ...
- Leading and Trailing(数论/n^k的前三位)题解
Leading and Trailing You are given two integers: n and k, your task is to find the most significant ...
- lightoj 1282 取对数的操作
/* 前三位 len=log10n^k(乘积的长度) len=klog10n n^k=x*10^(len-1) x=n^k/10^(len-1) log10x = k*log10n - (len-1) ...
- Uva 11029 Leading and Trailing (求n^k前3位和后3位)
题意:给你 n 和 k ,让你求 n^k 的前三位和后三位 思路:后三位很简单,直接快速幂就好,重点在于如何求前三位,注意前导0 资料:求n^k的前m位 博客连接地址 代码: #include < ...
- LightOJ 1282 Leading and Trailing (快数幂 + 数学)
http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS Me ...
- Leading and Trailing(LightOJ - 1282)
题解:求一个数的次幂,然后输出前三位和后三位,后三位注意有前导0的情况. 后三位直接用快速幂取模求解. 前三位求得时候只需要稍微变形一下,可以把乘过的结果拆成用科学计数法,那么小数部分只有由前面决定, ...
- LightOJ - 1282 Leading and Trailing (数论)
题意:求nk的前三位和后三位. 分析: 1.后三位快速幂取模,注意不足三位补前导零. 补前导零:假如nk为1234005,快速幂取模后,得到的数是5,因此输出要补前导零. 2.前三位: 令n=10a, ...
随机推荐
- 通过socket获取图片并保存
网络操作的相关API gethostbyname/gethostbyaddr/getservbyname struct hostent *gethostbyname(const char *name) ...
- 搭建SSH服务
1.安装 ssh-server 通过命令进行安装:sudo apt-get install openssh-server 在安装时遇到问题,根据提示,执行命令:sudo apt-get update, ...
- 绍一集训Round#1
到了之后看题,T1一看发现真熟悉,和之前做的一道题真的像,然后内心: 这里是绍一啊,不可能就出这么简单的题 我题意没理解错啊,这不是单独计算每条边的贡献么 维护一个人数的大小,然后直接搞一波就可以了吧 ...
- Deep Learning(深度学习)学习笔记整理系列之(一)(转)
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-0 ...
- 【SQL】四种排序开窗函数
一 .简单了解什么是开窗函数 什么是开窗函数,开窗函数有什么作用,特征是什么? 所谓开窗函数就是定义一个行为列,简单讲,就是在你查询的结果上,直接多出一列值(可以是聚合值或是排序号),特征就是带有ov ...
- 针对django2.2报错:UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 9737: ill....
1.报错: File "D:\Python\Python37-32\lib\site-packages\django\views\debug.py", line 332, in g ...
- 基于vue2.0 +vuex+ element-ui后台管理系统:包括本地开发调试详细步骤
效果演示地址, github地址: demo演示: 1.About 此项目是 vue2.0 + element-ui + node+mongodb 构建的后台管理系统,所有的数据都是从 ...
- 20min 快速着手Markdown
目录 Markdown介绍和基本使用 初步介绍 markdown的使用场景 为什么是 Markdown markdown的基本语法和使用平台 Q&A: Markdown介绍和基本使用 初步介绍 ...
- mysql操作命令梳理(2)-alter(update、insert)
在mysql运维操作中会经常使用到alter这个修改表的命令,alter tables允许修改一个现有表的结构,比如增加或删除列.创造或消去索引.改变现有列的类型.或重新命名列或表本身,也能改变表的注 ...
- Codeforces Round #503 (by SIS, Div. 2)-C. Elections
枚举每个获胜的可能的票数+按照花费排序 #include<iostream> #include<stdio.h> #include<string.h> #inclu ...