D. Mike and distribution

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike has always been thinking about the harshness of social inequality. He's so obsessed with it that sometimes it even affects him while solving problems. At the moment, Mike has two sequences of positive integers A = [a1, a2, ..., an] andB = [b1, b2, ..., bn] of length n each which he uses to ask people some quite peculiar questions.

To test you on how good are you at spotting inequality in life, he wants you to find an "unfair" subset of the original sequence. To be more precise, he wants you to select k numbers P = [p1, p2, ..., pk] such that 1 ≤ pi ≤ n for 1 ≤ i ≤ k and elements in Pare distinct. Sequence P will represent indices of elements that you'll select from both sequences. He calls such a subset P"unfair" if and only if the following conditions are satisfied: 2·(ap1 + ... + apk) is greater than the sum of all elements from sequence A, and 2·(bp1 + ... + bpk) is greater than the sum of all elements from the sequence B. Also, k should be smaller or equal to  because it will be to easy to find sequence P if he allowed you to select too many elements!

Mike guarantees you that a solution will always exist given the conditions described above, so please help him satisfy his curiosity!

Input

D. Mike and distribution
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike has always been thinking about the harshness of social inequality. He's so obsessed with it that sometimes it even affects him while solving problems. At the moment, Mike has two sequences of positive integers A = [a1, a2, ..., an] andB = [b1, b2, ..., bn] of length n each which he uses to ask people some quite peculiar questions.

To test you on how good are you at spotting inequality in life, he wants you to find an "unfair" subset of the original sequence. To be more precise, he wants you to select k numbers P = [p1, p2, ..., pk] such that 1 ≤ pi ≤ n for 1 ≤ i ≤ k and elements in Pare distinct. Sequence P will represent indices of elements that you'll select from both sequences. He calls such a subset P"unfair" if and only if the following conditions are satisfied: 2·(ap1 + ... + apk) is greater than the sum of all elements from sequence A, and 2·(bp1 + ... + bpk) is greater than the sum of all elements from the sequence B. Also, k should be smaller or equal to  because it will be to easy to find sequence P if he allowed you to select too many elements!

Mike guarantees you that a solution will always exist given the conditions described above, so please help him satisfy his curiosity!

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of elements in the sequences.

On the second line there are n space-separated integers a1, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

On the third line there are also n space-separated integers b1, ..., bn (1 ≤ bi ≤ 109) — elements of sequence B.

Output

On the first line output an integer k which represents the size of the found subset. k should be less or equal to .

On the next line print k integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the elements of sequence P. You can print the numbers in any order you want. Elements in sequence P should be distinct.

Example
input
5
8 7 4 8 3
4 2 5 3 7
output
3
1 4 5

解题思路:

这道题题意有点难描述,而且不难看懂就不多说了。

这道题难点就在于有两个数组,难以判断。 所以我们这里先讨论只有一个数组时的情况,如何使取得的数字大于剩下的?其实只要两两之间相互比较,取最大的,当序列长度为奇数时,我们可以先提出

其中一个,然后将剩余的两两比较,依旧必大于剩余的。

单个数组的问题讨论完了,然后分析两个数组,这里我们可以将其中一个数组排序用另一个数组记录排序结果(下标)id[],对下一个数组进行排序,这么说有点抽象,我把具体实现情况写一下

a[0] = 8 ,a[1] = 7,a[2] = 4, a[3] = 8,a[4] = 3;

b[0] = 4,a[1] = 2,a[2] = 5, a[3] = 3,a[4] = 7;

id[0] = 0,id[1] = 1,id[2] = 2,id[3] = 3,id[4] = 4;

先将a数组排序从大到小并用id数组记录结果(下标)

a数组排序结果 :  a0 a3 a1 a2 a4

用id数组记录:id[0] = 0,id[1] = 3,id[2] = 1,id[3] = 2,id[4] = 4;

这里可以用id对b数组进行排序,因为现在id储存的是a从大到小的顺序,按这个顺序排序a必大于剩余的,

排序过程: 因为是奇数,先取出第一个 b[0] 然后取 max(b[3],b[1]),max(b[2],b[4]),这样就可以得出满足两个数组的下标序列

实现代码:

#include<bits/stdc++.h>
using namespace std;
const int Max = +;
int m,id[Max];
long long a[Max],b[Max];
inline bool cmp(const int &x,const int &y)
{
return a[x] > a[y];
}
int main()
{
int i;
cin>>m;
for(i=;i<m;i++) cin>>a[i];
for(i=;i<m;i++) cin>>b[i];
for(i=;i<m;i++) id[i] = i;
sort(id,id+m,cmp);
int n = m/ + ;
cout<<n<<endl;
cout<<id[]+;
for(i=;i<m-;i+=){
if(b[id[i]]>b[id[i+]])
cout<<" "<<id[i]+;
else
cout<<" "<<id[i+]+;
}
if(m%==)
cout<<" "<<id[m-]+;
cout<<endl;
return ;
}

codeforces 798 D. Mike and distribution的更多相关文章

  1. codeforces 798 D. Mike and distribution(贪心+思维)

    题目链接:http://codeforces.com/contest/798/problem/D 题意:给出两串长度为n的数组a,b,然后要求长度小于等于n/2+1的p数组是的以p为下表a1-ap的和 ...

  2. codeforces 798 C. Mike and gcd problem(贪心+思维+数论)

    题目链接:http://codeforces.com/contest/798/problem/C 题意:给出一串数字,问如果这串数字的gcd大于1,如果不是那么有这样的操作,删除ai, ai + 1 ...

  3. 【codeforces 798D】Mike and distribution

    [题目链接]:http://codeforces.com/contest/798/problem/D [题意] 让你选一个下标集合 p1,p2,p3..pk 使得2*(a[p1]+a[p2]+..+a ...

  4. Codeforces 798 B. Mike and strings-String的find()函数

    好久好久好久之前的一个题,今天翻cf,发现这个题没过,补一下. B. Mike and strings time limit per test 2 seconds memory limit per t ...

  5. Codeforces 798D Mike and distribution(贪心或随机化)

    题目链接 Mike and distribution 题目意思很简单,给出$a_{i}$和$b_{i}$,我们需要在这$n$个数中挑选最多$n/2+1$个,使得挑选出来的 $p_{1}$,$p_{2} ...

  6. D. Mike and distribution 首先学习了一个玄学的东西

    http://codeforces.com/contest/798/problem/D D. Mike and distribution time limit per test 2 seconds m ...

  7. CF410div2 D. Mike and distribution

    /* CF410div2 D. Mike and distribution http://codeforces.com/contest/798/problem/D 构造 题意:给出两个数列a,b,求选 ...

  8. #410div2D. Mike and distribution

    D. Mike and distribution time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  9. Codeforces 547C/548E - Mike and Foam 题解

    目录 Codeforces 547C/548E - Mike and Foam 题解 前置芝士 - 容斥原理 题意 想法(口胡) 做法 程序 感谢 Codeforces 547C/548E - Mik ...

随机推荐

  1. MSComm控件与Win32 API操作串口有何区别?

    MSComm控件与Win32 API操作串口有何区别? [问题点数:50分,结帖人shell_shell]   收藏帖子 回复 我是一个小兵,在战场上拼命!   结帖率 83.33% 我以前用MSCo ...

  2. git lg 配置

    git config --global alias.lg "log --color --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d ...

  3. odoo 11导入外部数据过程记录

    在开发过程中,遇见需要将SQL Server中的数据转移到Pg数据库的情况,那么如何做才能解决这一问题呢? 1.自己写代码,将数据从SQL Server到PG. 2.利用odoo自带的导入功能导入. ...

  4. 更换pip源到国内镜像

    1.pip国内的一些镜像   阿里云 https://mirrors.aliyun.com/pypi/simple/  中国科技大学 https://pypi.mirrors.ustc.edu.cn/ ...

  5. JS回调函数--简单易懂有实例

    版权声明:本文为博主原创文章,转载请注明出处 初学js的时候,被回调函数搞得很晕,现在回过头来总结一下什么是回调函数. 我们先来看看回调的英文定义:A callback is a function t ...

  6. 配置Nginx反向代理WebSocket,以代理noVNC为例

    什么是Nginx Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器. Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮 ...

  7. ABP module-zero +AdminLTE+Bootstrap Table+jQuery权限管理系统第十四节--后台工作者HangFire与ABP框架Abp.Hangfire及扩展

    返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期 HangFire与Quartz.NET相比主要是HangFire的内置提供集成化的控制台,方便后台查看及监控,对于 ...

  8. 开源数据同步神器——canal

    前言 如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis.消息队列.大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据 ...

  9. Ext JS 4 的类系统

    前言 我们知道,JavaScript中没有真正的类,它是一种面向原型的语言 .这种语言一个强大的特性就是灵活,实现一个功能可以有很多不同的方式,用不同的编码风格和技巧.但随之也带来了代码的不可预测和难 ...

  10. 最近新明白的SQL小知识

    1.partition by和order by 先看三个小需求: ①查询出各个类编号的书本的数量. select count (类编号) as 数量, 类编号 from Books group by ...