codeforces 798 D. Mike and distribution
D. Mike and distribution
2 seconds
256 megabytes
standard input
standard output
Mike has always been thinking about the harshness of social inequality. He's so obsessed with it that sometimes it even affects him while solving problems. At the moment, Mike has two sequences of positive integers A = [a1, a2, ..., an] andB = [b1, b2, ..., bn] of length n each which he uses to ask people some quite peculiar questions.
To test you on how good are you at spotting inequality in life, he wants you to find an "unfair" subset of the original sequence. To be more precise, he wants you to select k numbers P = [p1, p2, ..., pk] such that 1 ≤ pi ≤ n for 1 ≤ i ≤ k and elements in Pare distinct. Sequence P will represent indices of elements that you'll select from both sequences. He calls such a subset P"unfair" if and only if the following conditions are satisfied: 2·(ap1 + ... + apk) is greater than the sum of all elements from sequence A, and 2·(bp1 + ... + bpk) is greater than the sum of all elements from the sequence B. Also, k should be smaller or equal to
because it will be to easy to find sequence P if he allowed you to select too many elements!
Mike guarantees you that a solution will always exist given the conditions described above, so please help him satisfy his curiosity!
2 seconds
256 megabytes
standard input
standard output
Mike has always been thinking about the harshness of social inequality. He's so obsessed with it that sometimes it even affects him while solving problems. At the moment, Mike has two sequences of positive integers A = [a1, a2, ..., an] andB = [b1, b2, ..., bn] of length n each which he uses to ask people some quite peculiar questions.
To test you on how good are you at spotting inequality in life, he wants you to find an "unfair" subset of the original sequence. To be more precise, he wants you to select k numbers P = [p1, p2, ..., pk] such that 1 ≤ pi ≤ n for 1 ≤ i ≤ k and elements in Pare distinct. Sequence P will represent indices of elements that you'll select from both sequences. He calls such a subset P"unfair" if and only if the following conditions are satisfied: 2·(ap1 + ... + apk) is greater than the sum of all elements from sequence A, and 2·(bp1 + ... + bpk) is greater than the sum of all elements from the sequence B. Also, k should be smaller or equal to
because it will be to easy to find sequence P if he allowed you to select too many elements!
Mike guarantees you that a solution will always exist given the conditions described above, so please help him satisfy his curiosity!
The first line contains integer n (1 ≤ n ≤ 105) — the number of elements in the sequences.
On the second line there are n space-separated integers a1, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.
On the third line there are also n space-separated integers b1, ..., bn (1 ≤ bi ≤ 109) — elements of sequence B.
On the first line output an integer k which represents the size of the found subset. k should be less or equal to
.
On the next line print k integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the elements of sequence P. You can print the numbers in any order you want. Elements in sequence P should be distinct.
5
8 7 4 8 3
4 2 5 3 7
3
1 4 5
解题思路:
这道题题意有点难描述,而且不难看懂就不多说了。
这道题难点就在于有两个数组,难以判断。 所以我们这里先讨论只有一个数组时的情况,如何使取得的数字大于剩下的?其实只要两两之间相互比较,取最大的,当序列长度为奇数时,我们可以先提出
其中一个,然后将剩余的两两比较,依旧必大于剩余的。
单个数组的问题讨论完了,然后分析两个数组,这里我们可以将其中一个数组排序用另一个数组记录排序结果(下标)id[],对下一个数组进行排序,这么说有点抽象,我把具体实现情况写一下
a[0] = 8 ,a[1] = 7,a[2] = 4, a[3] = 8,a[4] = 3;
b[0] = 4,a[1] = 2,a[2] = 5, a[3] = 3,a[4] = 7;
id[0] = 0,id[1] = 1,id[2] = 2,id[3] = 3,id[4] = 4;
先将a数组排序从大到小并用id数组记录结果(下标)
a数组排序结果 : a0 a3 a1 a2 a4
用id数组记录:id[0] = 0,id[1] = 3,id[2] = 1,id[3] = 2,id[4] = 4;
这里可以用id对b数组进行排序,因为现在id储存的是a从大到小的顺序,按这个顺序排序a必大于剩余的,
排序过程: 因为是奇数,先取出第一个 b[0] 然后取 max(b[3],b[1]),max(b[2],b[4]),这样就可以得出满足两个数组的下标序列
实现代码:
#include<bits/stdc++.h>
using namespace std;
const int Max = +;
int m,id[Max];
long long a[Max],b[Max];
inline bool cmp(const int &x,const int &y)
{
return a[x] > a[y];
}
int main()
{
int i;
cin>>m;
for(i=;i<m;i++) cin>>a[i];
for(i=;i<m;i++) cin>>b[i];
for(i=;i<m;i++) id[i] = i;
sort(id,id+m,cmp);
int n = m/ + ;
cout<<n<<endl;
cout<<id[]+;
for(i=;i<m-;i+=){
if(b[id[i]]>b[id[i+]])
cout<<" "<<id[i]+;
else
cout<<" "<<id[i+]+;
}
if(m%==)
cout<<" "<<id[m-]+;
cout<<endl;
return ;
}
codeforces 798 D. Mike and distribution的更多相关文章
- codeforces 798 D. Mike and distribution(贪心+思维)
题目链接:http://codeforces.com/contest/798/problem/D 题意:给出两串长度为n的数组a,b,然后要求长度小于等于n/2+1的p数组是的以p为下表a1-ap的和 ...
- codeforces 798 C. Mike and gcd problem(贪心+思维+数论)
题目链接:http://codeforces.com/contest/798/problem/C 题意:给出一串数字,问如果这串数字的gcd大于1,如果不是那么有这样的操作,删除ai, ai + 1 ...
- 【codeforces 798D】Mike and distribution
[题目链接]:http://codeforces.com/contest/798/problem/D [题意] 让你选一个下标集合 p1,p2,p3..pk 使得2*(a[p1]+a[p2]+..+a ...
- Codeforces 798 B. Mike and strings-String的find()函数
好久好久好久之前的一个题,今天翻cf,发现这个题没过,补一下. B. Mike and strings time limit per test 2 seconds memory limit per t ...
- Codeforces 798D Mike and distribution(贪心或随机化)
题目链接 Mike and distribution 题目意思很简单,给出$a_{i}$和$b_{i}$,我们需要在这$n$个数中挑选最多$n/2+1$个,使得挑选出来的 $p_{1}$,$p_{2} ...
- D. Mike and distribution 首先学习了一个玄学的东西
http://codeforces.com/contest/798/problem/D D. Mike and distribution time limit per test 2 seconds m ...
- CF410div2 D. Mike and distribution
/* CF410div2 D. Mike and distribution http://codeforces.com/contest/798/problem/D 构造 题意:给出两个数列a,b,求选 ...
- #410div2D. Mike and distribution
D. Mike and distribution time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Codeforces 547C/548E - Mike and Foam 题解
目录 Codeforces 547C/548E - Mike and Foam 题解 前置芝士 - 容斥原理 题意 想法(口胡) 做法 程序 感谢 Codeforces 547C/548E - Mik ...
随机推荐
- WIFI底座
自己贴片的51+WIFI的开发板终于到了..还是贴片的好看 美中不足的是需要改一个电阻的阻值..还有就是由于自己的8266和51单片机一块断电上电,所以如果用的USB线的质量不好就会出现 下载不了程序 ...
- Java多线程编程模式实战指南一:Active Object模式(上)
Active Object模式简介 Active Object模式是一种异步编程模式.它通过对方法的调用与方法的执行进行解耦来提高并发性.若以任务的概念来说,Active Object模式的核心则是它 ...
- EF Core中DbContext可以被Dispose多次
我们知道,在EF Core中DbContext用完后要记得调用Dispose方法释放资源.但是其实DbContext可以多次调用Dispose方法,虽然只有第一次Dispose会起作用,但是DbCon ...
- Windows下jupyter notebook 修改打开的浏览器
1. 打开cmd,输入jupyter notebook --generate-config 2. 根据返回的路径打开 C:\Users\Administrator\.jupyter\jupyter_n ...
- .NET小笔记-NPOI读取excel内容到DataTable
下载比较新的NPOI组件支持excel2007以上的,把.dll添加引用 引入命名空间 using NPOI.HSSF.UserModel;using NPOI.SS.UserModel;using ...
- Spring+SpringMVC+MyBatis整合(easyUI、AdminLte3)
实战篇(付费教程) 花了几天的时间,做了一个网站小 Demo,最终效果也与此网站类似.以下是这次实战项目的 Demo 演示. 登录页: 富文本编辑页: 图片上传: 退出登录: SSM 搭建精美实用的管 ...
- Thrift_简介(基于C#)
//Server: TProtocolFactory ProtocolFactory = new TBinaryProtocol.Factory(true, true); TTransportFact ...
- linux RPM manager
RPM manage:rpm2cpio package_name | cpio -id #将一个rpm包解压至当前目录rpm -qi package_name #查看一个已安装的rpm包信息rpm - ...
- Redis常用操作-------Key(键)
1.DEL key [key ...] 删除给定的一个或多个 key . 不存在的 key 会被忽略. 可用版本: >= 1.0.0 时间复杂度: O(N), N 为被删除的 key 的数量. ...
- python-深浅copy-18
# 赋值运算l1 = [1,2,3]l2 = l1l1.append('a')print(l1,l2) # [1, 2, 3, 'a'] [1, 2, 3, 'a'] #copyl1 = [1,2,3 ...