问题描述

给出一张有向图,可能存在环,对于所有的i,求出从1号点到i点的所有路径上的必经点集合。

什么是支配树

两个简单的小性质——

1.如果i是j的必经点,而j又是k的必经点,则i也是k的必经点。

2.如果i和j都是k的必经点,则i和j之间必然存在必经点关系,不可能互相都不是必经点。

不难发现所有的必经点关系形成了一个以1点为根的树形关系,每个点的支配点集合就是其到根节点(1点)路径上的点集,称这棵树为支配树。

怎么求支配树

假如我们得到的是一个有向无环图,那么只需要$O(N)$的做一遍拓扑排序就可以了,非常简单。

假如我们得到了一张有向有环图,那么我们可以$O(N)$的枚举一个点,把它从图上删去,从根$O(M)$的DFS(或BFS)一次,就可以知道它是哪些点的必经点,复杂度$O(NM)$,简单粗暴,但时间复杂度难以接受。

然后就有了Lengauer-Tarjan算法,复杂度为$O(NlogN)$,有一堆定理证明,想详细的搞明白最好去看Tarjan的英文论文,网上有些中文翻译难免带些小错误。

简单的上手题

据某位大佬说,这个算法还没见到过不是裸题的题…… OTZ

不过确实,目前这个算法一般应用在浅层,题面也是非常的裸,简直就是再说“快来拿支配树上我啊!”

CodeChef Counting on a directed graph GRAPHCNT

 #include <bits/stdc++.h>

 using namespace std;

 typedef long long lnt;

 const int mxn = ;

 int n, m;

 int tim;
int dfn[mxn];
int idx[mxn];
int fat[mxn];
int idm[mxn];
int sdm[mxn];
int anc[mxn];
int tag[mxn];
lnt siz[mxn];
lnt son[mxn]; vector<int> G[mxn];
vector<int> R[mxn];
vector<int> S[mxn];
vector<int> T[mxn]; void dfsG(int u)
{
idx[dfn[u] = ++tim] = u; for (auto v : G[u])if (!dfn[v])
fat[v] = u, dfsG(v);
} void dfsT(int u)
{
siz[u] = ; for (auto v : T[u])
dfsT(v), siz[u] += siz[v];
} int find(int u)
{
if (u == anc[u])
return u; int r = find(anc[u]); if (dfn[sdm[tag[anc[u]]]] < dfn[sdm[tag[u]]])
tag[u] = tag[anc[u]]; return anc[u] = r;
} signed main(void)
{
cin >> n >> m; for (int i = , u, v; i <= m; ++i)
{
cin >> u >> v;
G[u].push_back(v);
R[v].push_back(u);
} for (int i = ; i <= n; ++i)
sdm[i] = tag[i] = anc[i] = i; dfsG(); for (int i = tim; i > ; --i)
{
int u = idx[i]; for (auto v : R[u])if (dfn[v])
{
find(v);
if (dfn[sdm[tag[v]]] < dfn[sdm[u]])
sdm[u] = sdm[tag[v]];
} anc[u] = fat[u]; S[sdm[u]].push_back(u); int t = idx[i - ]; for (auto v : S[t])
{
find(v);
if (sdm[tag[v]] == t)
idm[v] = t;
else
idm[v] = tag[v];
} S[t].clear();
} for (int i = ; i <= tim; ++i)
{
int u = idx[i];
if (idm[u] != sdm[u])
idm[u] = idm[idm[u]];
} for (int i = ; i <= tim; ++i)
T[idm[i]].push_back(i); dfsT(); lnt ans = tim * (tim - ); for (int i = tim, u; i >= ; --i)
{
++son[u = idx[i]];
if (idm[u] != )
son[idm[u]] += son[u];
else
ans -= son[u] * (son[u] - );
} ans >>= ; cout << ans << endl;
}

HDU 4694 Important Sisters

 #include <cstdio>
#include <cstring> #define mxn 50005
#define mxm 200005
#define lnt long long int n, m; struct Lin {
int tt;
int hd[mxn];
int nt[mxm];
int to[mxm]; void init(void) {
memset(hd, , sizeof hd), tt = ;
} void adde(int u, int v) {
nt[++tt] = hd[u], to[tt] = v, hd[u] = tt;
}
}G, R, T, S; int tim;
int idx[mxn];
int dfn[mxn];
int fat[mxn];
int anc[mxn];
int tag[mxn];
int sdm[mxn];
int idm[mxn];
lnt ans[mxn]; void dfsG(int u) {
idx[dfn[u] = ++tim] = u; for (int i = G.hd[u], v; i; i = G.nt[i])
if (!dfn[v = G.to[i]])dfsG(v), fat[v] = u;
} void dfsT(int u) {
ans[u] += u; for (int i = T.hd[u], v; i; i = T.nt[i])
ans[v = T.to[i]] += ans[u], dfsT(v);
} int find(int u) {
if (anc[u] == u)return u; int r = find(anc[u]); if (dfn[sdm[tag[anc[u]]]] < dfn[sdm[tag[u]]])
tag[u] = tag[anc[u]]; return anc[u] = r;
} signed main(void)
{
while (scanf("%d%d", &n, &m) != EOF) {
memset(ans, , sizeof ans);
memset(dfn, , sizeof dfn), tim = ; G.init(); R.init(); T.init(); S.init(); for (int i = , u, v; i <= m; ++i)
scanf("%d%d", &u, &v), G.adde(u, v), R.adde(v, u); for (int i = ; i <= n; ++i)
sdm[i] = tag[i] = anc[i] = i; dfsG(n); for (int i = tim; i > ; --i) {
int u = idx[i], v; for (int j = R.hd[u]; j; j = R.nt[j])
if (dfn[v = R.to[j]]) {
find(v);
if (dfn[sdm[tag[v]]] < dfn[sdm[u]])
sdm[u] = sdm[tag[v]];
} anc[u] = fat[u]; S.adde(sdm[u], u); u = idx[i - ]; for (int j = S.hd[u]; j; j = S.nt[j]) {
find(v = S.to[j]);
if (sdm[tag[v]] == u)
idm[v] = u;
else
idm[v] = tag[v];
}
} for (int i = ; i <= tim; ++i) {
int u = idx[i];
if (idm[u] != sdm[u])
idm[u] = idm[idm[u]];
T.adde(idm[u], u);
} dfsT(n); for (int i = ; i < n; ++i)
printf("%lld ", ans[i]); printf("%lld\n", ans[n]);
}
}

SPOJ BIA - Bytelandian Information Agency

 #include <bits/stdc++.h>

 using namespace std;

 const int mxn = ;
const int mxm = ; int n, m; vector<int> G[mxn];
vector<int> R[mxn];
vector<int> S[mxn]; inline void init(vector<int> v[mxn])
{
for (int i = ; i < mxn; ++i)
v[i].clear();
} int tim;
int dfn[mxn];
int idx[mxn];
int fat[mxn];
int idm[mxn];
int sdm[mxn];
int anc[mxn];
int cnt[mxn];
int tag[mxn]; void dfsG(int u)
{
idx[dfn[u] = ++tim] = u; for (auto v : G[u])if (!dfn[v])
fat[v] = u, dfsG(v);
} int find(int u)
{
if (anc[u] == u)
return u; int r = find(anc[u]); if (dfn[sdm[tag[anc[u]]]] < dfn[sdm[tag[u]]])
tag[u] = tag[anc[u]]; return anc[u] = r;
} signed main(void)
{
while (cin >> n >> m)
{
init(G);
init(R);
init(S); tim = ; memset(cnt, , sizeof cnt);
memset(dfn, , sizeof dfn); for (int i = , u, v; i <= m; ++i)
{
cin >> u >> v;
G[u].push_back(v);
R[v].push_back(u);
} for (int i = ; i <= n; ++i)
sdm[i] = tag[i] = anc[i] = i; dfsG(); for (int i = tim; i > ; --i)
{
int u = idx[i]; for (auto v : R[u])if (dfn[v])
{
find(v);
if (dfn[sdm[tag[v]]] < dfn[sdm[u]])
sdm[u] = sdm[tag[v]];
} anc[u] = fat[u]; S[sdm[u]].push_back(u); u = idx[i - ]; for (auto v : S[u])
{
find(v); if (sdm[tag[v]] == u)
idm[v] = u;
else
idm[v] = tag[v];
} S[u].clear();
} for (int i = ; i <= tim; ++i)
{
int u = idx[i];
if (idm[u] != sdm[u])
idm[u] = idm[idm[u]];
} for (int i = ; i <= tim; ++i)
++cnt[idm[i]]; int ans = ; for (int i = ; i <= tim; ++i)
if (cnt[i])++ans; cout << ans << endl; for (int i = ; i <= tim; ++i)
if (cnt[i])cout << i << " "; cout << endl;
}
}

Useful Roads

@Author: YouSiki

Dominator Tree & Lengauer-Tarjan Algorithm的更多相关文章

  1. Java内存泄漏分析系列之七:使用MAT的Histogram和Dominator Tree定位溢出源

    原文地址:http://www.javatang.com 基础概念 先列出几个基础的概念: Shallow Heap 和 Retained Heap Shallow Heap表示对象本身占用内存的大小 ...

  2. Tarjan Algorithm

    List Tarjan Algorithm List Knowledge 基本知识 基本概念 复杂度 有向图 Code 缩点 Code 用途 无向图 Articulation Point-割顶与连通度 ...

  3. SPOJ 10628 Count on a tree(Tarjan离线LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

  4. SPOJ 10628 Count on a tree(Tarjan离线 | RMQ-ST在线求LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

  5. Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...

  6. Codeforces Round #391 div1 757F (Dominator Tree)

    首先先膜杜教orz 这里简单说一下支配树的概念 支配树是对一个有向图来讲的 规定一个起点s,如果s到v的路径上必须经过某些点u,那么离s最近的点u就是v的支配点 在树上的关系就是,v的父亲是u. 一般 ...

  7. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  8. [LeetCode] Verify Preorder Serialization of a Binary Tree 验证二叉树的先序序列化

    One way to serialize a binary tree is to use pre-oder traversal. When we encounter a non-null node, ...

  9. 【LeetCode】Verify Preorder Serialization of a Binary Tree(331)

    1. Description One way to serialize a binary tree is to use pre-order traversal. When we encounter a ...

随机推荐

  1. 【转】ORA-00257:archiver error. 错误的处理方法

    出现这个问题的原因一般是日志满了.这里以用户tt为例: 一.用sys用户登录 sqlplus sys/pass@tt as sysdba 二.看看archiv log所在位置 SQL> show ...

  2. vue 中使用iconfont Unicode编码线上字体图标的流程

    1.打开http://www.iconfont.cn官网,搜索你想要的图标.添加字体图标到购物车,点击购物车然后添加至项目,点击确定 2.点击图标管理/我的项目,找到对应的文件,点击Unicode,然 ...

  3. Nancy异步用法

    个人笔记,记录Nancy异步用法 基类,所有请求都将首先执行该类,并执行Before事件 namespace CxyAdvert.Base { public class BaseNancyModel ...

  4. 实例解析forEach、for...in与for...of

    在开发过程中经常需要循环遍历数组或者对象,js也为我们提供了不少方法供使用,其中就有三兄弟forEach.for...in.for...of,这三个方法应该是使用频率最高的,但很多人却一值傻傻分不清, ...

  5. PMO在组织中实现价值应做的工作

    PMO在组织中实现价值应做的工作 研发人员及项目经理常常对PMO有反感情绪,认为其不熟悉业务流程与技术.经常要求项目经理和研发人员提交形式化的材料,只审批和监控,不能为项目提供良好的服务.在很多企业, ...

  6. Thrift_简介(基于C#)

    //Server: TProtocolFactory ProtocolFactory = new TBinaryProtocol.Factory(true, true); TTransportFact ...

  7. ubuntu系统升级和其他相关操作记录

    之前在openstack中安装了ubuntu 12.04虚拟机,版本较低,需要升级为高版本.下面分享下升级过程: ubuntu系统升级操作:$ cat /etc/issueUbuntu 12.04.5 ...

  8. BugPhobia发布篇章:Beta版本学霸在线系统正式发布

    0x00:测试报告版本管理 版本号 具体细节 修订时间 V 1.0 整理第一轮迭代用户管理和登陆注册的功能性验证测试,预计将继续网页对浏览器版本的兼容性测试 2015/11/12 V1.0.1 整理第 ...

  9. linux及安全第四周总结

    学习内容:使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用 一.用户态.内核态 权限分级——为了系统本身更稳定,使系统不宜崩溃.(并不是所有程序员缩写的代码都很健壮!!) x86 CP ...

  10. 20135337——Linux实践三:程序破解

    程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...