Qtree3题解(树链剖分+线段树+set)
外话:最近洛谷加了好多好题啊...原题入口 这题好像是SPOJ的题,挺不错的。看没有题解还是来一篇...
题意
很易懂吧。。
题解
我的做法十分的暴力:树链剖分(伪)+线段树+ std :: set ...
首先,我们可以考虑每次修改一个点的颜色的影响。
易知,翻转一个点颜色,只会对于他的子树产生影响,对于别的点就毫无意义了。
然后,只要学过一点树链剖分的就知道,我们可以将整棵树按它的\(dfs\)序进行标号,
每个点的序号就是\(dfn\),
然后记下它的子树大小\(size\),然后对于每个点\(u\)所在的子树区间就是\([dfn[u], dfn[u]+size[u]-1]\)。
所以每次操作的时候,只要对于那一段区间进行修改就行了。
然后我们要修改和查询什么呢?不就是查询包含这个点,且深度最小的黑点吗?(需要把\(1\)作为根)
所以,我们每次记下一个区间中,包含这个点的所有黑色标号以及他们的深度,用\(pair\)记录一下(因为这个可以
自动按照第一关键字排序),再用\(set\)维护一下区间最值就行了。
每次更新的时候只要在\(set\)里面\(insert\)和\(erase\)。
查询就是从根节点一直向下跑,不断取一个深度更小的\(ans\)。
具体有些实现在程序中会体现的……
总时间复杂度\(O(q \log \ n \log q)\) 空间复杂度也是\(O(q \log \ n \log \ q)\)。(所以说很暴力嘛……)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(int i = (l), _end_ = (int)(r); i <= _end_; ++i)
#define Fordown(i, r, l) for(int i = (r), _end_ = (int)(l); i >= _end_; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar() ) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar() ) x = (x<<1) + (x<<3) + (ch ^ '0');
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("P4116.in", "r", stdin);
freopen ("P4116.out", "w", stdout);
#endif
}
const int N = 1e5 + 1e3, M = N << 1;
int n, q;
int sz[N], dfn[N], dep[N];
int to[M], Next[M], Head[N], e = 0;
void add(int u, int v) {
to[++e] = v;
Next[e] = Head[u];
Head[u] = e;
}
void Dfs(int u, int fa) {
static int clk = 0;
sz[u] = 1;
dfn[u] = ++ clk;
dep[u] = dep[fa] + 1;
for (register int i = Head[u]; i; i = Next[i]) {
register int v = to[i];
if (v == fa) continue ;
Dfs(v, u); sz[u] += sz[v];
}
}//就是树链剖分的第一个dfs,求出size,dep,dfn
typedef pair<int, int> PII;
#define mp make_pair
#define lson o << 1, l, mid
#define rson o << 1 | 1, mid + 1, r
set<PII> S[N << 2];
bool col[N];//因为不知道是变啥颜色,所以要记一下原来的颜色
bool uopt; int ul, ur; PII uv;
void Update(int o, int l, int r) {
if (ul <= l && r <= ur) {
if (uopt) S[o].erase(uv);
else S[o].insert(uv);
//erase可以直接调用那个值.
return ;
}
int mid = (l + r) >> 1;
if (ul <= mid) Update(lson);
if (ur > mid) Update(rson);
}
PII ans; int up;
void Query(int o, int l, int r) {
if ((bool)S[o].size() )
ans = min(ans, *S[o].begin() );
//begin就是这个set中最小的那一个,即这里面深度最小的那个点
if (l == r) return ;
int mid = (l + r) >> 1;
if (up <= mid) Query(lson);
else Query(rson);
}
const int inf = 0x3f3f3f3f;
int main () {
n = read(); q = read();
For (i, 1, n - 1) {
int u, v;
scanf ("%d%d", &u, &v);
//int u = read(), v = read();
add(u, v); add(v, u);
}
Dfs(1, 0);
For (i, 1, q) {
int opt, pos;
scanf ("%d%d", &opt, &pos);
//int opt = read(), pos = read();
if (opt == 0) {
uopt = col[pos];
col[pos] ^= true;
ul = dfn[pos];
ur = dfn[pos] + sz[pos] - 1;
uv = mp(dep[pos], pos);
Update(1, 1, n);
} else {
ans = mp(inf, inf);
up = dfn[pos];
Query(1, 1, n);
printf ("%d\n", ans.second == inf ? -1 : ans.second);
}
}
//cerr << clock() << endl;
return 0;
}
后记:看到很多dalao都是用啥 主席树,倍增,和不用\(set\)的线段树做过去的。跑得都比我快,希望后面有人能讲一讲QAQ。
Qtree3题解(树链剖分+线段树+set)的更多相关文章
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- POJ3237 Tree 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...
- 【CF725G】Messages on a Tree 树链剖分+线段树
[CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...
- 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp
题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...
- 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp
题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分
题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...
随机推荐
- WebService与CXF
一:Webservice 1:WebService是干什么的?有什么用? 一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序 ...
- React-简书视频学习总结
react的基础语法 redux这个数据层框架 react-redux如何方便我们在react中使用redux react-router 4.0 这样的非常实用的相关的第三方模块儿 immutable ...
- odoo 10.0部署shell
环境ubuntu16+nginx+python2.7.12+postgresql9.5+odoo 10.0 community #!/bin/bash #author:guoyihot@outlook ...
- Python从菜鸟到高手(5):数字
1 基础知识 Python语言与其他编程语言一样,也支持四则运算(加.减.乘.除),以及圆括号运算符.在Python语言中,数字分为整数和浮点数.整数就是无小数部分的数,浮点数就是有小数部分的数. ...
- NFS共享文件系统部署
1. 概述 本篇博客主要是介绍如何安装和使用NFS服务. 2. 安装软件包 首先确认系统是否已经安装相应的软件包,执行命:rpm -qa | egrep "rpcbind|nfs-utils ...
- Mvc_前后端绑定数据json集合
ViewBag.SysModuleList =new List<SysModule>(){.....}; var data = @Html.Raw(Json.Encode(ViewBag ...
- python基础学习笔记(十一)
迭代器 本节进行迭代器的讨论.只讨论一个特殊方法---- __iter__ ,这个方法是迭代器规则的基础. 迭代器规则 迭代的意思是重复做一些事很多次---就像在循环中做的那样.__iter__ 方 ...
- Week 2 代码审查
我的伙伴是6班的小伙子潘礼鹏,经过几天的相处我觉得真的是说话很有趣的人,性格非常好,我们很划得来. 以下为我对他的代码的审查结果: VS2012与VS2013的兼容性 在这里写一个工具集的问题,不同的 ...
- Daily Scrum NO.10
工作概况 今天是两周正是开发的最后一个工作日,虽然也是编译的DEADLINE,但成员们还是较为积极.计划内的工作基本都能够完成:线程池.异常清理器和动态爬取的功能.异常清理器界面的第一版也在今晚做了出 ...
- Beta版测试报告
Beta版测试报告 测试中发现的Bug: Version 2.0 Bug List 1. 在动态监测界面,若随便点击“开始”.“关闭”.“结束”.红叉,会出现不定式崩溃现象. 2. 处理空数据时可能会 ...