Qtree3题解(树链剖分+线段树+set)
外话:最近洛谷加了好多好题啊...原题入口 这题好像是SPOJ的题,挺不错的。看没有题解还是来一篇...
题意
很易懂吧。。
题解
我的做法十分的暴力:树链剖分(伪)+线段树+ std :: set ...
首先,我们可以考虑每次修改一个点的颜色的影响。
易知,翻转一个点颜色,只会对于他的子树产生影响,对于别的点就毫无意义了。
然后,只要学过一点树链剖分的就知道,我们可以将整棵树按它的\(dfs\)序进行标号,
每个点的序号就是\(dfn\),
然后记下它的子树大小\(size\),然后对于每个点\(u\)所在的子树区间就是\([dfn[u], dfn[u]+size[u]-1]\)。
所以每次操作的时候,只要对于那一段区间进行修改就行了。
然后我们要修改和查询什么呢?不就是查询包含这个点,且深度最小的黑点吗?(需要把\(1\)作为根)
所以,我们每次记下一个区间中,包含这个点的所有黑色标号以及他们的深度,用\(pair\)记录一下(因为这个可以
自动按照第一关键字排序),再用\(set\)维护一下区间最值就行了。
每次更新的时候只要在\(set\)里面\(insert\)和\(erase\)。
查询就是从根节点一直向下跑,不断取一个深度更小的\(ans\)。
具体有些实现在程序中会体现的……
总时间复杂度\(O(q \log \ n \log q)\) 空间复杂度也是\(O(q \log \ n \log \ q)\)。(所以说很暴力嘛……)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(int i = (l), _end_ = (int)(r); i <= _end_; ++i)
#define Fordown(i, r, l) for(int i = (r), _end_ = (int)(l); i >= _end_; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar() ) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar() ) x = (x<<1) + (x<<3) + (ch ^ '0');
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("P4116.in", "r", stdin);
freopen ("P4116.out", "w", stdout);
#endif
}
const int N = 1e5 + 1e3, M = N << 1;
int n, q;
int sz[N], dfn[N], dep[N];
int to[M], Next[M], Head[N], e = 0;
void add(int u, int v) {
to[++e] = v;
Next[e] = Head[u];
Head[u] = e;
}
void Dfs(int u, int fa) {
static int clk = 0;
sz[u] = 1;
dfn[u] = ++ clk;
dep[u] = dep[fa] + 1;
for (register int i = Head[u]; i; i = Next[i]) {
register int v = to[i];
if (v == fa) continue ;
Dfs(v, u); sz[u] += sz[v];
}
}//就是树链剖分的第一个dfs,求出size,dep,dfn
typedef pair<int, int> PII;
#define mp make_pair
#define lson o << 1, l, mid
#define rson o << 1 | 1, mid + 1, r
set<PII> S[N << 2];
bool col[N];//因为不知道是变啥颜色,所以要记一下原来的颜色
bool uopt; int ul, ur; PII uv;
void Update(int o, int l, int r) {
if (ul <= l && r <= ur) {
if (uopt) S[o].erase(uv);
else S[o].insert(uv);
//erase可以直接调用那个值.
return ;
}
int mid = (l + r) >> 1;
if (ul <= mid) Update(lson);
if (ur > mid) Update(rson);
}
PII ans; int up;
void Query(int o, int l, int r) {
if ((bool)S[o].size() )
ans = min(ans, *S[o].begin() );
//begin就是这个set中最小的那一个,即这里面深度最小的那个点
if (l == r) return ;
int mid = (l + r) >> 1;
if (up <= mid) Query(lson);
else Query(rson);
}
const int inf = 0x3f3f3f3f;
int main () {
n = read(); q = read();
For (i, 1, n - 1) {
int u, v;
scanf ("%d%d", &u, &v);
//int u = read(), v = read();
add(u, v); add(v, u);
}
Dfs(1, 0);
For (i, 1, q) {
int opt, pos;
scanf ("%d%d", &opt, &pos);
//int opt = read(), pos = read();
if (opt == 0) {
uopt = col[pos];
col[pos] ^= true;
ul = dfn[pos];
ur = dfn[pos] + sz[pos] - 1;
uv = mp(dep[pos], pos);
Update(1, 1, n);
} else {
ans = mp(inf, inf);
up = dfn[pos];
Query(1, 1, n);
printf ("%d\n", ans.second == inf ? -1 : ans.second);
}
}
//cerr << clock() << endl;
return 0;
}
后记:看到很多dalao都是用啥 主席树,倍增,和不用\(set\)的线段树做过去的。跑得都比我快,希望后面有人能讲一讲QAQ。
Qtree3题解(树链剖分+线段树+set)的更多相关文章
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- POJ3237 Tree 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...
- 【CF725G】Messages on a Tree 树链剖分+线段树
[CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...
- 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp
题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...
- 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp
题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分
题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...
随机推荐
- Ionic app 通知在Moto 360 Watch上显示通知(1)
手机与Moto 360 watch配对之后,watch上会接收到微信消息的通知,那么我们就可以利用这个特性开发一个App,在Watch显示我们自己的通知,具体过程如下 1.手机扫描二维码安装ticwa ...
- 阿里Java面经大全(整合版)
本文里的面经内容全部来源于牛客网,作为秋招备战复习与查缺补漏时使用.里面部分面经有我的注释和想法,以及部分解答,不一定正确,大家可以查询补充. 阿里巴巴,三面,java实习 昨天晚上11点打电话来,问 ...
- 在Windows7上如何找到Cookie
摘要 出于兴趣爱好,前一阵子做了一个网页,网页中需要用到Cookie,但是,根据书上的说明,并没有找打教材中所说的Cookie的位置,本文就主要介绍在计算机(Win7)中Cookie的存放位置,同样适 ...
- 提升----你所不知道的JavaScript系列(3)
很多编程语言在执行的时候都是自上而下执行,但实际上这种想法在JavaScript中并不完全正确, 有一种特殊情况会导致这个假设是错误的.来看看下面的代码, a = 2; var a; console. ...
- Python-列表-9
列表: Why: 我们现在已经学过的数据类型有:数字,布尔值,字符串,大家都知道数字主要用于计算,bool值主要是条件判断,只有字符串可以用于数据的存储,这些数据类型够用么?对于一门语言来说,肯定是不 ...
- vue路由\导航刷新后:ative\localStorage\url截取参数
<el-menu :default-active="$route.path" router mode="horizontal"> <el-me ...
- 对于VS软件的个人评价
因为还是一个菜鸟,对于VS这样的大软件还只能是自己个人的理解,以前用的是VC++,后来因为电脑系统更新,开始接触了VS,个人觉得还是vs2010更好用一些,作为一款windows平台应用程序的集成开发 ...
- PairWork-电梯调度程序结对编程
结对编程人员:050/184 1 结对编程 1.1 结对编程的优缺点 优点: ● 与单独开发相比,结对能够使人们在压力之下保持更好的状态.结对编程鼓励双方保持代码的高质量,即使在出现了让人不得不飞快地 ...
- Linux内核分析-系统中断在内核中的实现
分析system_call中断处理过程 在MenuOS中添加上周所运用到的系统调用 即在Linuxkernel/menu/test.c文件中,添加代码如下: int Mkdir() { const c ...
- Linux内核分析 读书笔记 (第七章)
第七章 链接 1.链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储器并执行. 2.链接可以执行于编译时,也就是在源代码被翻译成机器代码时:也可以执行于 ...