设A(n)为a中n的个数,B(n)为b中n的个数。如果只考虑加法显然是一个卷积,减法翻转一下也显然是一个卷积。

  问题在于两者都有。容易想到分开处理。那么可以考虑分治。即对于值域区间[l,r],分别计算A[l,mid]和B[mid+1,r]的贡献及A[mid+1,r]和B[l,mid]的贡献,然后再递归处理[l,mid]和[mid+1,r]。一定程度上类似于cdq分治。

  注意结果可能爆int,用NTT的话不太方便。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}c[N],d[N];
int T,n,m,q,a[N],b[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
void solve(int l,int r)
{
if (l==r) {f[]+=1ll*a[l]*b[l];return;}
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int t=;while (t<r-l+) t<<=;
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=l;i<=mid;i++) c[i-l].x=a[i];
for (int i=mid+;i<=r;i++) d[i-mid-].x=b[i];
mul(t,c,d);
for (int i=l+mid+;i<=mid+r;i++) f[i]+=(long long)(c[i-l-mid-].x+0.5);
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=mid+;i<=r;i++) c[i-mid-].x=a[i];
for (int i=l;i<=mid;i++) d[mid-i].x=b[i];
mul(t,c,d);
for (int i=;i<=r-l;i++) f[i]+=(long long)(c[i-].x+0.5);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4836.in","r",stdin);
freopen("bzoj4836.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read(),q=read();
memset(f,,sizeof(f));
memset(a,,sizeof(a));memset(b,,sizeof(b));
int x=,y;
for (int i=;i<=n;i++) x=max(y=read(),x),a[y]++;
for (int i=;i<=m;i++) x=max(y=read(),x),b[y]++;
solve(,x);
while (q--) printf(LL,f[read()]);
}
return ;
}

BZOJ4836 二元运算(分治FFT)的更多相关文章

  1. [BZOJ4836]二元运算(分治FFT)

    4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 202[Submit][Stat ...

  2. 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

    题目描述 定义二元运算 opt 满足   现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c  你需要求出有多少对 (i, j) 使得 a_ ...

  3. bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数

    [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 201[Submit][Status][Di ...

  4. 【bzoj4836】二元运算 分治FFT

    Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...

  5. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  6. BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...

  7. BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...

  8. BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】

    Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...

  9. BNUOJ 51279[组队活动 Large](cdq分治+FFT)

    传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...

  10. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

随机推荐

  1. GIT 分支管理:创建与合并分支、解决合并冲突

    分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN. 如果两个平行宇宙互不干扰,那对现在的你也没啥影响.不过,在某个时间点,两个平行宇宙合并 ...

  2. 读取Excel的记录并导入SQL数据库

    准备一下,近段时间,需要把Excel的数据导入数据库中. 引用命名空间: using System.Configuration; using System.Data; using System.Dat ...

  3. TensorFlow入门(五)多层 LSTM 通俗易懂版

    欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经 ...

  4. C#一些常用的图片操作方法:生成文字图片 合并图片等

    生成文字图片: /// <summary> /// 生成文字图片 /// </summary> /// <param name="text">& ...

  5. Docker 快速验证 HTML 导出 PDF 高效方案

    需求分析 项目中用到了 Echarts,想要把图文混排,当然包括 echarts 生成的 Canvas 图也导出 PDF. 设计和实现时,分析了 POI.iText.freemaker.world 的 ...

  6. MySQL数据库对象-索引

    1. 概述2. 索引分类2.1 不同索引的概念2.1.1 普通索引2.1.2 唯一索引2.1.3 全文索引2.1.4 多列索引3. 索引操作3.1 普通索引3.1.1 创建表时创建普通索引3.1.2 ...

  7. Docker容器学习梳理 - 基础知识(1)

    Docker是PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源.Docker是通过内核虚拟化技 ...

  8. Daily Scrumming* 2015.12.22(Day 14)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1112 无 任务说明 今天没有写前端界面,而是完成了跨域请求的实现以及用户实名认证API 前后端大部分数 ...

  9. PolarCode

    什么是polar code极化码 为了实现可靠的信号传输,编码学家在过去的半个多世纪提出多种纠错码技术如里所码(RS码).卷积码,Turbo码等,并在各种通信系统中取得了广泛的应用.但是以往所有实用的 ...

  10. 关于singleton的几个实现

    public class Singleton { public static void main(String[] args) { Singleton s1 = Singleton.getInstan ...