BZOJ4836 二元运算(分治FFT)
设A(n)为a中n的个数,B(n)为b中n的个数。如果只考虑加法显然是一个卷积,减法翻转一下也显然是一个卷积。
问题在于两者都有。容易想到分开处理。那么可以考虑分治。即对于值域区间[l,r],分别计算A[l,mid]和B[mid+1,r]的贡献及A[mid+1,r]和B[l,mid]的贡献,然后再递归处理[l,mid]和[mid+1,r]。一定程度上类似于cdq分治。
注意结果可能爆int,用NTT的话不太方便。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}c[N],d[N];
int T,n,m,q,a[N],b[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
void solve(int l,int r)
{
if (l==r) {f[]+=1ll*a[l]*b[l];return;}
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int t=;while (t<r-l+) t<<=;
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=l;i<=mid;i++) c[i-l].x=a[i];
for (int i=mid+;i<=r;i++) d[i-mid-].x=b[i];
mul(t,c,d);
for (int i=l+mid+;i<=mid+r;i++) f[i]+=(long long)(c[i-l-mid-].x+0.5);
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=mid+;i<=r;i++) c[i-mid-].x=a[i];
for (int i=l;i<=mid;i++) d[mid-i].x=b[i];
mul(t,c,d);
for (int i=;i<=r-l;i++) f[i]+=(long long)(c[i-].x+0.5);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4836.in","r",stdin);
freopen("bzoj4836.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read(),q=read();
memset(f,,sizeof(f));
memset(a,,sizeof(a));memset(b,,sizeof(b));
int x=,y;
for (int i=;i<=n;i++) x=max(y=read(),x),a[y]++;
for (int i=;i<=m;i++) x=max(y=read(),x),b[y]++;
solve(,x);
while (q--) printf(LL,f[read()]);
}
return ;
}
BZOJ4836 二元运算(分治FFT)的更多相关文章
- [BZOJ4836]二元运算(分治FFT)
4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 578 Solved: 202[Submit][Stat ...
- 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT
题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_ ...
- bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数
[Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 577 Solved: 201[Submit][Status][Di ...
- 【bzoj4836】二元运算 分治FFT
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT
4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MB Description 定义二元运算 opt 满足 现在给定一 ...
- BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT
Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...
- BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...
- BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
随机推荐
- JVM有哪些分区?(解释详细 通俗易懂)
JVM的分区可以分为两种:线程私有的内存区和线程共享的内存区 一.JVM中线程私有的内存区: 1.程序计数器:当前线程所执行的字节码行号计数指示器,是线程私有的,即每个线程都有自己的程序计数器,需要注 ...
- SerialPort.h SerialPort.cpp
SerialPort.h 1 #ifndef __SERIALPORT_H__ 2 #define __SERIALPORT_H__ 3 4 #define WM_COMM_BREAK_DETECTE ...
- React-简书视频学习总结
react的基础语法 redux这个数据层框架 react-redux如何方便我们在react中使用redux react-router 4.0 这样的非常实用的相关的第三方模块儿 immutable ...
- POJ3292&&2115
这两道题还是比较简单的,没有什么难度 不过归在数论这个专题里我还是比较认同的,多少有些关系 3292 题目大意:给你一个范围n,让你求出这个范围内所有形式类似\(4k+1(k为正整数)\)的数中的H- ...
- Tensorflow实例:利用LSTM预测股票每日最高价(一)
RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神 ...
- SJP's Blog
This is SJP's blog. Here is a mirror web of his blog.
- Git push 时如何避免出现 "Merge branch 'master' of ..."
在使用 Git 的进行代码版本控制的时候,往往会发现在 log 中出现 "Merge branch 'master' of ..." 这句话,如下图所示.日志中记录的一般为开发过程 ...
- WPF没落了吗?
从08年开始一直到现在,碰到所有的项目,我个人经手的,都用wpf开发. wpf应该说一直没有火过,一直平平淡淡. 个人为什么一直执着用wpf,开始使用是因公司项目,做了两年wpf开发,后来换工作一直搜 ...
- Netdata---Linux系统性能实时监控平台部署记录
通常来说,作为一个Linux的SA,很有必要掌握一个专门的系统监控工具,以便能随时了解系统资源的占用情况.下面就介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具 ...
- 百度之星-day2-1004-二分答案
由于序列有序,求其中一个最优解,二分答案即可,注意二分时上边界满足才保存 #include<iostream> #include<stdio.h> #include<st ...