Sample Means

The sample mean from a group of observations is an estimate of the population mean.
Given a sample of sizen, consider n independent random variables
X1,X2, ..., Xn, each corresponding to one randomly selected observation. Each of these variables has the distribution of the population, with mean
and standard deviation. The sample mean is defined to be.

By the properties of means and variances of random variables, the mean and variance of the sample mean are the following:

Although the mean of the distribution of is identical to the mean of the population distribution, the variance is much smaller for large sample sizes.

For example, suppose the random variable X records a randomly selected student's score on a national test, where the population distribution for the score is normal with mean 70 and standard deviation 5 (N(70,5)). Given asimple
random sample (SRS)
of 200 students, the distribution of the sample mean score has mean 70 and standard deviation 5/sqrt(200) = 5/14.14 = 0.35.

Distribution of the Sample Mean

When the distribution of the population is normal, then the distribution of the sample mean is also normal. For a normal population distribution with mean and
standard deviation, the distribution of the sample mean is normal, with mean
and standard deviation.

This result follows from the fact that any linear combination of independent normal random variables is also normally distributed. This means that for two independent normal random variablesX and
Y and any constants a and b, aX + bY will be normally distributed. In the case of the sample mean, the linear combination is
=(1/n)*(X1 + X2 + ... Xn).

For example, consider the distributions of yearly average test scores on a national test in two areas of the country. In the first area, the test scoreX is normally distributed with mean 70 and standard deviation 5. In the second area, the yearly
average test scoreY is normally distributed with mean 65 and standard deviation 8. The differenceX - Y between the two areas is normally distributed, with mean 70-65 = 5 and variance 5² + 8² = 25 + 64 = 89. The standard deviation is the square
root of the variance, 9.43. The probability that areaX will have a higher score than area
Y may be calculated as follows:
P(X > Y) = P(X - Y > 0)

= P(((X - Y) - 5)/9.43 > (0 - 5)/9.43)

= P(Z > -0.53) = 1 - P(Z < -0.53) = 1 - 0.2981 = 0.7019.


Area X will have a higher average score than area Y about 70% of the time.

The Central Limit Theorem

The most important result about sample means is the Central Limit Theorem. Simply stated, this theorem says that for a large enough sample sizen, the distribution of the sample mean
will approach a normal distribution.This is true for a sample of independent random variables from
any population distribution, as long as the population has a finite standard deviation.

A formal statement of the Central Limit Theorem is the following:

If is the mean of a random sampleX1, X2, ... , Xn of size
n from a distribution with a finite mean and a finite positive variance²,
then the distribution ofW = isN(0,1) in the limit as n approaches infinity.

This means that the variable is distributedN(,).

One well-known application of this theorem is the normal approximation to the binomial distribution.

Example

Using the MINITAB "RANDOM" command with the "UNIFORM" subcommand, I generated 100 samples of size 50 each from the Uniform(0,1) distribution. The mean of this distribution is 0.5, and its standard deviation is approximately 0.3. I then applied the "RMEAN" command
to calculate the sample mean across the rows of my sample, resulting in 50 sample mean values (each of which represents the mean of 100 observations). The MINITAB "DESCRIBE" command gave the following information about the sample mean data:

Descriptive Statistics

Variable        N     Mean   Median  Tr Mean    StDev  SE Mean
C101 50 0.49478 0.49436 0.49450 0.02548 0.00360 Variable Min Max Q1 Q3
C101 0.43233 0.55343 0.47443 0.51216

The mean 0.49 is nearly equal to the population mean 0.5. The desired value for the standard deviation is the population standard deviation divided by the square root of the size of the sample (which is 10 in this case), approximately 0.3/10 = 0.03. The calculated
value for this sample is 0.025. To evaluate the normality of the sample mean data, I used the "NSCORES" and "PLOT" commands to create a normal quantile plot of the data, shown below.


The plot indicates that the data follow an approximately normal distribution, lying close to a diagonal line through the main body of the points.

Sample Means(耶鲁大学教材)的更多相关文章

  1. Joel在耶鲁大学的演讲

    Joel Spolsky是一个美国的软件工程师,他的网络日志"Joel谈软件"(Joel on Software)非常有名,读者人数可以排进全世界前100名. 上个月28号,他回到 ...

  2. 如何获得大学教材的PDF版本?

    最近急需一本算法书的配套答案,这本配套单独出售,好像在市面上还买不到,在淘宝上搜索也只是上一个版本,并没有最新版本,让我很无奈.加上平时肯定会有这么一种情况,想看一些书,但买回来也看不了几次,加上计算 ...

  3. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 4 Dependent Samples

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  4. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 3 One-sample and two-sample tests

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  5. 世界名校网络课程大盘点,美国大学CS专业十三大研究方向,世界50所知名大学提供开放课程

    世界名校网络课程大盘点   加州大学伯克利分校http://webcast.berkeley.edu/ 加州大学伯克利分校与斯坦福大学. 麻省理工学院等一同被誉为美国工程科技界的学术 领袖,其常年位居 ...

  6. 美国大学排名之本科中最用功的学校top15

    美国大学排名之本科中最用功的学校top15 威久留学2016-07-29 13:15:59美国留学 留学新闻 留学选校阅读(490)评论(1)   去美国留学的同学可能都知道USnews美国大学排名, ...

  7. 斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感[转]

    近日,在网易公开课视频网站上看完了<机器学习>课程视频,现做个学后感,也叫观后感吧. 学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew Ng ...

  8. 计算机专业-世界大学学术排名,QS排名,U.S.NEWS排名

    2015年美国大学计算机专业排名 计算机专业介绍:计算机涉及的领域非常广泛,其分支学科也是非常多.所以在美国将主要的专业方向分为人工智能,程序应用,计算机系统(Systems)以及计算机理论(theo ...

  9. 办理卡尔加里大学(本科)学历认证『微信171922772』calgary学位证成绩单使馆认证University of calgary

    办理卡尔加里大学(本科)学历认证『微信171922772』calgary学位证成绩单使馆认证University of calgary Q.微信:171922772办理教育部国外学历学位认证海外大学毕 ...

随机推荐

  1. List 接口中ArrayList Vector LinkedList 比较

    访问权限Arryist最快 其次Vector  最慢LinkedList

  2. mysql大全

    1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- 创建 备份 ...

  3. 进程控制(Note for apue and csapp)

    1. Introduction We now turn to the process control provided by the UNIX System. This includes the cr ...

  4. 47_并发编程-线程python实现

    一.Threading模块   1.线程的创建 - 方式一 from threading import Thread import time def sayhi(name): time.sleep(2 ...

  5. linux下把动态链接库加入环境变量的几种方式

    一. 将网络SDK各动态库路径加入到LD_LIBRARY_PATH环境变量 1.在终端输入:export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/XXX 只在当前终端起作用 ...

  6. postgresql-删除重复数据

      greenplum最终的方法是: delete from test where (gp_segment_id, ctid) not in (select gp_segment_id, min(ct ...

  7. 阿里架构师的工作总结:Spring Cloud在架构演进中起到的作用

    Spring Cloud作为一套微服务治理的框架,几乎考虑到了微服务治理的方方面面,本篇主要解答这两个问题:Spring Cloud在微服务的架构中都做了哪些事情?Spring Cloud提供的这些功 ...

  8. Django--Ajax 提交

    一 什么是Ajax AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传 ...

  9. redis3.0集群部署和测试

    redis3.0集群部署和测试 环境介绍 两台Centos7的虚拟机模拟6个节点,A台3个master节点,B台3个slave节点A地址:172.16.81.140B地址:172.16.81.141r ...

  10. Spring Boot + Spring Cloud 构建微服务系统(十):配置中心(Spring Cloud Bus)

    技术背景 我们在上一篇讲到,Spring Boot程序只在启动的时候加载配置文件信息,这样在GIT仓库配置修改之后,虽然配置中心服务器能够读取最新的提交信息,但是配置中心客户端却不会重新读取,以至于不 ...