Sample Means(耶鲁大学教材)
Sample Means
The sample mean
from a group of observations is an estimate of the population mean
.
Given a sample of sizen, consider n independent random variables
X1,X2, ..., Xn, each corresponding to one randomly selected observation. Each of these variables has the distribution of the population, with mean
and standard deviation
. The sample mean is defined to be
.
By the properties of means and variances of random variables, the mean and variance of the sample mean are the following:

Although the mean of the distribution of
is identical to the mean of the population distribution, the variance is much smaller for large sample sizes.
For example, suppose the random variable X records a randomly selected student's score on a national test, where the population distribution for the score is normal with mean 70 and standard deviation 5 (N(70,5)). Given asimple
random sample (SRS) of 200 students, the distribution of the sample mean score
has mean 70 and standard deviation 5/sqrt(200) = 5/14.14 = 0.35.
Distribution of the Sample Mean
When the distribution of the population is normal, then the distribution of the sample mean is also normal. For a normal population distribution with mean
and
standard deviation
, the distribution of the sample mean is normal, with mean
and standard deviation
.
This result follows from the fact that any linear combination of independent normal random variables is also normally distributed. This means that for two independent normal random variablesX and
Y and any constants a and b, aX + bY will be normally distributed. In the case of the sample mean, the linear combination is
=(1/n)*(X1 + X2 + ... Xn).
For example, consider the distributions of yearly average test scores on a national test in two areas of the country. In the first area, the test scoreX is normally distributed with mean 70 and standard deviation 5. In the second area, the yearly
average test scoreY is normally distributed with mean 65 and standard deviation 8. The differenceX - Y between the two areas is normally distributed, with mean 70-65 = 5 and variance 5² + 8² = 25 + 64 = 89. The standard deviation is the square
root of the variance, 9.43. The probability that areaX will have a higher score than area
Y may be calculated as follows:
P(X > Y) = P(X - Y > 0)
= P(((X - Y) - 5)/9.43 > (0 - 5)/9.43)
= P(Z > -0.53) = 1 - P(Z < -0.53) = 1 - 0.2981 = 0.7019.
Area X will have a higher average score than area Y about 70% of the time.
The Central Limit Theorem
The most important result about sample means is the Central Limit Theorem. Simply stated, this theorem says that for a large enough sample sizen, the distribution of the sample mean
will approach a normal distribution.This is true for a sample of independent random variables from
any population distribution, as long as the population has a finite standard deviation
.
A formal statement of the Central Limit Theorem is the following:
If
is the mean of a random sampleX1, X2, ... , Xn of size
n from a distribution with a finite mean
and a finite positive variance
²,
then the distribution ofW =
isN(0,1) in the limit as n approaches infinity.
This means that the variable
is distributedN(
,
).
One well-known application of this theorem is the normal approximation to the binomial distribution.
Example
Using the MINITAB "RANDOM" command with the "UNIFORM" subcommand, I generated 100 samples of size 50 each from the Uniform(0,1) distribution. The mean of this distribution is 0.5, and its standard deviation is approximately 0.3. I then applied the "RMEAN" command
to calculate the sample mean across the rows of my sample, resulting in 50 sample mean values (each of which represents the mean of 100 observations). The MINITAB "DESCRIBE" command gave the following information about the sample mean data:
Descriptive Statistics Variable N Mean Median Tr Mean StDev SE Mean
C101 50 0.49478 0.49436 0.49450 0.02548 0.00360 Variable Min Max Q1 Q3
C101 0.43233 0.55343 0.47443 0.51216
The mean 0.49 is nearly equal to the population mean 0.5. The desired value for the standard deviation is the population standard deviation divided by the square root of the size of the sample (which is 10 in this case), approximately 0.3/10 = 0.03. The calculated
value for this sample is 0.025. To evaluate the normality of the sample mean data, I used the "NSCORES" and "PLOT" commands to create a normal quantile plot of the data, shown below.

The plot indicates that the data follow an approximately normal distribution, lying close to a diagonal line through the main body of the points.
Sample Means(耶鲁大学教材)的更多相关文章
- Joel在耶鲁大学的演讲
Joel Spolsky是一个美国的软件工程师,他的网络日志"Joel谈软件"(Joel on Software)非常有名,读者人数可以排进全世界前100名. 上个月28号,他回到 ...
- 如何获得大学教材的PDF版本?
最近急需一本算法书的配套答案,这本配套单独出售,好像在市面上还买不到,在淘宝上搜索也只是上一个版本,并没有最新版本,让我很无奈.加上平时肯定会有这么一种情况,想看一些书,但买回来也看不了几次,加上计算 ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 4 Dependent Samples
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 3 One-sample and two-sample tests
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 世界名校网络课程大盘点,美国大学CS专业十三大研究方向,世界50所知名大学提供开放课程
世界名校网络课程大盘点 加州大学伯克利分校http://webcast.berkeley.edu/ 加州大学伯克利分校与斯坦福大学. 麻省理工学院等一同被誉为美国工程科技界的学术 领袖,其常年位居 ...
- 美国大学排名之本科中最用功的学校top15
美国大学排名之本科中最用功的学校top15 威久留学2016-07-29 13:15:59美国留学 留学新闻 留学选校阅读(490)评论(1) 去美国留学的同学可能都知道USnews美国大学排名, ...
- 斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感[转]
近日,在网易公开课视频网站上看完了<机器学习>课程视频,现做个学后感,也叫观后感吧. 学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew Ng ...
- 计算机专业-世界大学学术排名,QS排名,U.S.NEWS排名
2015年美国大学计算机专业排名 计算机专业介绍:计算机涉及的领域非常广泛,其分支学科也是非常多.所以在美国将主要的专业方向分为人工智能,程序应用,计算机系统(Systems)以及计算机理论(theo ...
- 办理卡尔加里大学(本科)学历认证『微信171922772』calgary学位证成绩单使馆认证University of calgary
办理卡尔加里大学(本科)学历认证『微信171922772』calgary学位证成绩单使馆认证University of calgary Q.微信:171922772办理教育部国外学历学位认证海外大学毕 ...
随机推荐
- unbuntu14.04下的串口软件monicom的使用
上篇文章写到了将esp-idf中的examples里的helloworld烧写进了esp32的flash里面,本文就讲讲这个例子的测试和一个项目工程的建立. 首先为了得到esp32输出的信息,需要一个 ...
- 17.异常(三)之 e.printStackTrace()介绍
一.关于printStackTrace()方法 public void printStackTrace()方法将此throwable对象的堆栈追踪输出至标准错误输出流,作为System.err的值.输 ...
- Vuejs——(11)组件——slot内容分发
版权声明:出处http://blog.csdn.net/qq20004604 目录(?)[+] 本篇资料来于官方文档: http://cn.vuejs.org/guide/components ...
- Solutions and Summay for Linked List Naive and Easy Questions
1.Remove Linked List Elements package linkedlist; /* * Question: Remove all elements from a linked l ...
- setlocale()函数详解——C语言
setlocale函数 函数原型:char* setlocale (int category, const char* locale); setlocale位于头文件,setlocale() 函数既可 ...
- python中的数字取整(ceil,floor,round)概念和用法
python中的数学运算函数(ceil,floor,round)的主要任务是截掉小数以后的位数.总体来说 就是取整用的.只是三者之间有微妙的区别: floor() :把数字变小 ceil() : ...
- JS 数据类型和数据分析
栈区:(stack)-由编译器自动分配释放,存放函数的参数值,局部变量的值等. 特点是存放体积小,使用频率高的数据.可以类比内存. 堆区:(heap)-一般由程序员分配释放,若开发者不释放,程序结束时 ...
- 聊聊我面试过的一个最奇葩的 Java 程序猿!
上周我聊了聊最让我反感的 10 种程序猿,无奈一个小时就进行了删除,详细原因就不说了,容易招黑. 今天聊的我面试过的最奇葩的一个程序猿,绝对是奇葩中的奇葩,简直是程序猿中的另类,最让我反感的程序猿又添 ...
- win10 + cuda8.0 + caffe SSD + vs2015 + python3
一.下载 git clone https://github.com/runhang/caffe-ssd.git cd caffe-ssd 1. 修改 build_win.cmd if !PYTHON_ ...
- Spring中新建记录后返回自增主键的处理方法
接手一个旧系统改造的过程,要插入后立即返回自增值,不能重构guid类型主键,Spring提供了很优美的机制. Spring利用GeneratedKeyHolder,提供了一个可以返回新增记录对应主键值 ...