tf.one_hot(indices, depth):将目标序列转换成one_hot编码

tf.one_hot
(indices, depth, on_value=None, off_value=None, 
axis=None, dtype=None, name=None)

indices = [0, 2, -1, 1]
depth = 3
on_value = 5.0 
off_value = 0.0 
axis = -1 
#Then output is [4 x 3]: 
output = 
[5.0 0.0 0.0] // one_hot(0) 
[0.0 0.0 5.0] // one_hot(2) 
[0.0 0.0 0.0] // one_hot(-1) 
[0.0 5.0 0.0] // one_hot(1)

with tf.Session() as sess:
print(sess.run(tf.one_hot(np.array([np.array([0,1,2,3]),np.array([2,0,3,2])]),depth=4,axis=-1))) # [[[ 1. 0. 0. 0.]
# [ 0. 1. 0. 0.]
# [ 0. 0. 1. 0.]
# [ 0. 0. 0. 1.]]
# [[ 0. 0. 1. 0.]
# [ 1. 0. 0. 0.]
# [ 0. 0. 0. 1.]
# [ 0. 0. 1. 0.]]] oh = tf.one_hot(indices = [0, 2, -1, 1], depth = 3, on_value = 5.0 , off_value = 0.0, axis = -1)
sess = tf.Session()
sess.run(oh) # array([[5., 0., 0.],
# [0., 0., 5.],
# [0., 0., 0.],
# [0., 5., 0.]], dtype=float32)

另一种思路:稀疏张量构建法

import numpy as np
import tensorflow as tf NUMCLASS = 3
batch_size = 5 labels = tf.placeholder(dtype=tf.int32, shape=[batch_size, 1])
index = tf.reshape(tf.range(0, batch_size,1), [batch_size, 1])
one_hot = tf.sparse_to_dense(
tf.concat(values=[index, labels], axis=1),
[batch_size, NUMCLASS],
1.0, 0.0
)
with tf.Session() as sess:
lab = np.random.randint(0,3,[5,1])
print(sess.run(one_hot, feed_dict={labels:lab}))
print(sess.run(tf.one_hot(np.squeeze(lab),depth=3,axis=1)))

注意两种方法输入数据维度的变化(稀疏法为了得到足够的索引需要升维),结果如下:

[[ 1.  0.  0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
[[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]]

『TensorFlow』one_hot化标签的更多相关文章

  1. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  2. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  3. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  4. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  5. 『TensorFlow』分布式训练_其三_多机分布式

    本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,tas ...

  6. 『TensorFlow』DCGAN生成动漫人物头像_下

    『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...

  7. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  8. 『TensorFlow』流程控制

    『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

随机推荐

  1. Django之Cookie、Session、CSRF、Admin

    Django之Cookie.Session.CSRF.Admin   Cookie 1.获取Cookie: 1 2 3 4 5 6 request.COOKIES['key'] request.get ...

  2. Mac开发工具汇总

    1: Json Parser Mac版 http://www.pc6.com/mac/180470.html

  3. [js]ajax-异源请求jsonp

    参考: http://www.cnblogs.com/whatisfantasy/p/6237713.html http://www.cnblogs.com/freely/p/6690804.html ...

  4. JavaScript 数组插入元素并排序

    1.插入类排序 插入类排序的思想是:在一个已排好序的序列区内,对待排序的无序序列中的记录逐个进行处理,每一步都讲待排序的记录和已排好的序列中的记录进行比较,然后有序的插入到该序列中,直到所有待排序的记 ...

  5. nginx----------nginx日志详细分解

    1.客户端(用户)IP地址.如:上例中的 47.52.45.228 2.访问时间.如:上例中的 [03/Jan/2013:21:17:20 -0600] 3.请求方式(GET或者POST等).如:上例 ...

  6. form提交所有数据

    HTML: <div class="panel"> <div class="panel-body"> <h3>完善简历< ...

  7. 解决IDEA无法安装插件的问题

    进入2018年以来,在IDEA插件中心中,安装插件经常安装失败,报连接超时的错误.如下: 我们发现连接IDEA的插件中心使用的是https的链接,我们在浏览器中使用https访问插件中心并不能访问. ...

  8. Spring Boot IoC 容器初始化过程

    1. 加载 ApplicationContextInializer & ApplicationListener 2. 初始化环境 ConfigurableEnvironment & 加 ...

  9. git常用操作记录

    之前的多人项目大多使用了SVN作为版本控制,自己只会用eclipse连接GitHub的操作.这次项目采用了git作为版本控制系统,所以学会了很多新操作,这里权当记录,以备后用. git的一些基本操作可 ...

  10. 使用java进行 AES 加密 解密?

    百度百科是这样定义的: 高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准.这个标 ...