『TensorFlow』one_hot化标签
tf.one_hot(indices, depth):将目标序列转换成one_hot编码
tf.one_hot
(indices, depth, on_value=None, off_value=None,
axis=None, dtype=None, name=None)indices = [0, 2, -1, 1]
depth = 3
on_value = 5.0
off_value = 0.0
axis = -1
#Then output is [4 x 3]:
output =
[5.0 0.0 0.0] // one_hot(0)
[0.0 0.0 5.0] // one_hot(2)
[0.0 0.0 0.0] // one_hot(-1)
[0.0 5.0 0.0] // one_hot(1)
with tf.Session() as sess:
print(sess.run(tf.one_hot(np.array([np.array([0,1,2,3]),np.array([2,0,3,2])]),depth=4,axis=-1))) # [[[ 1. 0. 0. 0.]
# [ 0. 1. 0. 0.]
# [ 0. 0. 1. 0.]
# [ 0. 0. 0. 1.]]
# [[ 0. 0. 1. 0.]
# [ 1. 0. 0. 0.]
# [ 0. 0. 0. 1.]
# [ 0. 0. 1. 0.]]] oh = tf.one_hot(indices = [0, 2, -1, 1], depth = 3, on_value = 5.0 , off_value = 0.0, axis = -1)
sess = tf.Session()
sess.run(oh) # array([[5., 0., 0.],
# [0., 0., 5.],
# [0., 0., 0.],
# [0., 5., 0.]], dtype=float32)
另一种思路:稀疏张量构建法
import numpy as np
import tensorflow as tf NUMCLASS = 3
batch_size = 5 labels = tf.placeholder(dtype=tf.int32, shape=[batch_size, 1])
index = tf.reshape(tf.range(0, batch_size,1), [batch_size, 1])
one_hot = tf.sparse_to_dense(
tf.concat(values=[index, labels], axis=1),
[batch_size, NUMCLASS],
1.0, 0.0
)
with tf.Session() as sess:
lab = np.random.randint(0,3,[5,1])
print(sess.run(one_hot, feed_dict={labels:lab}))
print(sess.run(tf.one_hot(np.squeeze(lab),depth=3,axis=1)))
注意两种方法输入数据维度的变化(稀疏法为了得到足够的索引需要升维),结果如下:
[[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
[[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
『TensorFlow』one_hot化标签的更多相关文章
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『TensorFlow』TFR数据预处理探究以及框架搭建
一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
- 『TensorFlow』分布式训练_其三_多机分布式
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,tas ...
- 『TensorFlow』DCGAN生成动漫人物头像_下
『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...
- 『TensorFlow』滑动平均
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...
- 『TensorFlow』流程控制
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...
- 『TensorFlow』梯度优化相关
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...
随机推荐
- JDBC事务(三)ThreadLocal绑定Connection
处理一个请求即开启一个线程,在三层中,执行三层中的方法都是用的同一个线程. 我们开启一个事务,使用conn.setAutoCommit(false); conn应该属于ado层,不应该出现在servi ...
- [LeetCode] 33. Search in Rotated Sorted Array_Medium tag: Binary Search
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
- 使用AMBER中遇到的一些问题
1.读取蛋白问题 读取无配体pdb文件(loadpdb complex.pdb)时,出现一堆 FATAL: Atom .R<ARG >.A<HD1 > does not hav ...
- 从零开始一起学习SLAM | 给点云加个滤网
对VSLAM和三维重建感兴趣的在计算机视觉life"公众号菜单栏回复"三维视觉"进交流群. 小白:师兄,上次你讲了点云拼接后,我回去费了不少时间研究,终于得到了和你给的参 ...
- 使用git将项目上传到github(最简单方法)
首先你需要一个github账号,所有还没有的话先去注册吧! https://github.com/ 我们使用git需要先安装git工具,这里给出下载地址,下载后一路直接安装即可: https://gi ...
- Vue+element 实现文件导出xlsx格式
傻瓜教程: 第一步:安装两个依赖包 npm install --save xlsx file-saver 第二步:建立一个Vue文件,导入以下代码即可 <template> <d ...
- i2c状态机方法设计-verilog
2010-09-05 21:04:00 verilog语言基础学的差不多了.接着就是看看华为的语言编写规范.状态机设计方法是fpga的重要设计方法.所以我要记上一笔. 只要会FSM方法,用fpga编写 ...
- Porsche Piwis Tester II V12.100 Version Released
Piwis Tester II v12.100 Version released today! In this new version we can find the latest type Pors ...
- 网页布局要注意的事项,以及CSS3需要特别注意的地方。
overflow: hidden; white-space: nowrap; text-overflow: ellipsis;隐藏超出部分,出省略号 一定要先布局!布局!布局!要先设置好色块,将位置确 ...
- keepalived + lvs
Keepalived原理 Keepalived原理 keepalived也是模块化设计,不同模块复杂不同的功能,下面是keepalived的组件 core check vrrp libipfwc li ...