import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
tf.summary.histogram(layer_name+'/weights',Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs,Weights),biases)
tf.summary.histogram(layer_name+'/biases',biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs

# make up some real data
x_data =np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise

with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32,[None,1],name='x_input')
ys = tf.placeholder(tf.float32,[None,1],name='y_input')

# create hidden layer
l1 = add_layer(xs,1,10,1,activation_function=tf.nn.relu)
# create output layer
prediction = add_layer(l1,10,1,2,activation_function=None)
# the error between prediction adn real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs/",sess.graph)

# import step
sess.run(tf.global_variables_initializer())

for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(result,i)

莫烦tensorflow(6)-tensorboard的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(8)-CNN

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. Python 简单soket例子

      简单的soket例子 Python 2.0 客户端服务端传输 1.可发字符串,可发字节 bys类型 Python 3.0 客户端服务端传输 1.只能发bys,比特流的类型. 2.bys类型只能接收 ...

  2. sqlalchemy orm介绍

    ORM介绍 简解:用户会使用ORM时会直接访问对象,对象在通过ORM与数据库进行交互,不需要用户操作sql. 详解:orm英文全称object relational mapping,就是对象映射关系程 ...

  3. Linux 系统日志

    查看日志服务 大部分Linux发行版默认的日志守护进程为 syslog,位于 /etc/syslog 或 /etc/syslogd 或/etc/rsyslog.d,默认配置文件为 /etc/syslo ...

  4. java基础hashmap

    Iterator中hasNext(), next() 在Iterator类中,我们经常用到两个方法: hasNext(), next(),具体含义: next(),  是返回当前元素, 并指向下一个元 ...

  5. SVN的Not authorized to open root of edit operation解决办法

    以为经常用到这是转贴  谢谢 Subversion装了1.5.2版,乌龟SVN装的是1.5.1版本,可以通过乌龟正常访问到版本库,但当check out时却出现了"Not authorize ...

  6. wepy开发小程序eslint报错error 'getApp' is not defined no-undef

    wepy开发小程序使用getApp().globalData保存全局数据很方便,但是会在控制台看到很多报错:“error 'getApp' is not defined no-undef”,这是esl ...

  7. arXiv 提交 pre-print 文章的相关注意事项

    arXiv 提交 pre-print 文章的相关注意事项 2018-11-25 22:38:28 1. 有一个可以正常上传 paper 的 arXiv 账号:https://arxiv.org/  这 ...

  8. Docker Doc之一:小白入门

    Docker与虚拟机相比有更大的优势,而且微软巨硬全力支持Docker,这个不得不让大家关心一下Docker的3W. Docker是什么 2013 年初,PaaS 提供商 dotCloud 开源了一个 ...

  9. Java 爬虫学习

    Java爬虫领域最强大的框架是JSoup:可直接解析具体的URL地址(即解析对应的HTML),提供了一套强大的API,包括可以通过DOM.CSS选择器,即类似jQuery方式来取出和操作数据.主要功能 ...

  10. C# 绘制圆角矩形

    Graphics g = e.Graphics; // 圆角半径 ; // 要实现 圆角化的 矩形 Rectangle rect = , , panel4.Width - cRadius, panel ...