import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
tf.summary.histogram(layer_name+'/weights',Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs,Weights),biases)
tf.summary.histogram(layer_name+'/biases',biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs

# make up some real data
x_data =np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise

with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32,[None,1],name='x_input')
ys = tf.placeholder(tf.float32,[None,1],name='y_input')

# create hidden layer
l1 = add_layer(xs,1,10,1,activation_function=tf.nn.relu)
# create output layer
prediction = add_layer(l1,10,1,2,activation_function=None)
# the error between prediction adn real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs/",sess.graph)

# import step
sess.run(tf.global_variables_initializer())

for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(result,i)

莫烦tensorflow(6)-tensorboard的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(8)-CNN

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. 在oracle中如何把前台传过来的日期字符串转换成正确格式

    insert into ibill_sys_version(versionId,productCode,versionCode,versionDesc,versionUrl, upgradeWay,u ...

  2. java开发中中文编码问题

    //ajax以get方式提交,字符串中包含中文 //后台struts中对该string的set方法中 this.jsonString = new String(jsoString.getBytes(& ...

  3. Linux vim文档操作

    1.vim passwd文件 出现 发现文件passwd.swp文件,无法正常编辑vim的时候,删除掉.psswd.swp即可 vim下:dd #删除一行 vim下:p #粘贴一行 vim下:y #复 ...

  4. centos6.5下安装Redis

    已有redis-3.2.1.tar.gz文件 拖到centos系统的桌面 现在在桌面目录下 tar -zxv -f redis-3.2.1.tar.gz以解压压缩包 cd redis-3.2.1以切换 ...

  5. 用python写MapReduce函数——以WordCount为例

    尽管Hadoop框架是用java写的,但是Hadoop程序不限于java,可以用python.C++.ruby等.本例子中直接用python写一个MapReduce实例,而不是用Jython把pyth ...

  6. js的缓存

    无网络的情况下,使用静态资源呈现页面的方法,只有h5的manifest 有网的情况下(可以连接到服务器的情况下),有3种判断缓存的方式. ------------------------------- ...

  7. 【转】 ISP-黑电平校正(BLC)

    转自:https://blog.csdn.net/xiaoyouck/article/details/72824534 介绍黑电平(Black Level Correction)也就是黑色的最低点,以 ...

  8. nginx ----> 官网about页面(翻译)

    Nginx about链接:https://nginx.org/en/ nginx 基本的HTTP服务器功能其他HTTP服务器功能邮件代理服务器功能TCP / UDP代理服务器功能架构和可扩展性经测试 ...

  9. python学习(三)

  10. BFS GPLT L2-016 愿天下有情人都是失散多年的兄妹

    题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805061769609216 分析:一开始以为是并查集..... ...