import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
tf.summary.histogram(layer_name+'/weights',Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs,Weights),biases)
tf.summary.histogram(layer_name+'/biases',biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs

# make up some real data
x_data =np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise

with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32,[None,1],name='x_input')
ys = tf.placeholder(tf.float32,[None,1],name='y_input')

# create hidden layer
l1 = add_layer(xs,1,10,1,activation_function=tf.nn.relu)
# create output layer
prediction = add_layer(l1,10,1,2,activation_function=None)
# the error between prediction adn real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs/",sess.graph)

# import step
sess.run(tf.global_variables_initializer())

for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(result,i)

莫烦tensorflow(6)-tensorboard的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(8)-CNN

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. Dart - Isolate 并发

    在Dart中实现并发可以用Isolate,它是类似于线程(thread)但不共享内存的独立运行的worker,是一个独立的Dart程序执行环境.其实默认环境就是一个main isolate. 在Dar ...

  2. Docker Kubernetes 容器扩容与缩容

    Docker Kubernetes 容器扩容与缩容 环境: 系统:Centos 7.4 x64 Docker版本:18.09.0 Kubernetes版本:v1.8 管理节点:192.168.1.79 ...

  3. linux bash tutorial

    bash read-special-keys-in-bash xdotool linux 登录启动顺序

  4. webpack搭建项目时出现的报错“Module build failed (from ./node_modules/css-loader/dist/cjs.js) CssSyntaxError”

    控制台出现的错误如下: webpack.config.js中的配置如下: module.exports={ entry:'./src/main.js', output:{ path:__dirname ...

  5. 【BZOJ2301】Problem B

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  6. oracle 连接问题汇总

    遇到的情况: 1/后台配置完好,若是连其他的库都是好的,当连接另外的库时,始终连接不上,这是需要考虑到服务端安装文件tnsnames文件中服务名在客户端的安装文件tnsnames文件中是否存在

  7. UVA11992 Fast Matrix Operations

    思路 注意到最多20行,拆成20颗线段树即可 注意set标记清空左右儿子的add,不要清空自己的add,因为这个set操作之后可能还有add存在这个节点上 代码 #include <cstdio ...

  8. python学习-----协程

    一.协程的引入 对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算, ...

  9. 浅谈Overload和Override

    Overload是重载的意思,Override是覆盖的意思,也就是重写. 重载Overload表示同一个类中可以有多个名称相同的方法,但这些方法的参数列表各不相同(即参数个数或类型不同). 重写Ove ...

  10. 【依赖注入】Unity和Autofac

    全面理解ASP.NET Core依赖注入:https://www.cnblogs.com/jesse2013/p/di-in-aspnetcore.html MSDN:https://docs.mic ...