代码参考:http://blog.csdn.net/qq_33229466/article/details/79140428

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
int n,mx[maxn],ch[maxn][],fa[maxn],last=,id[maxn],tot=;
int dp[maxn],pos[maxn],cnt,b[maxn],c[maxn],root[maxn],ans;
char s[maxn];
struct node{
int l,r;
}tr[maxn*];
void add(int i,int x){
int p,q,np,nq;
p=last;last=np=++tot;mx[np]=mx[p]+;id[np]=i;
for(;!ch[p][x]&&p;p=fa[p])ch[p][x]=np;
if(!p)fa[np]=;
else{
q=ch[p][x];
if(mx[q]==mx[p]+)fa[np]=q;
else{
nq=++tot;mx[nq]=mx[p]+;id[nq]=i;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];
fa[q]=fa[np]=nq;
for(;ch[p][x]==q;p=fa[p])ch[p][x]=nq;
}
}
}
void ins(int &d,int l,int r,int x){
if(!d)d=++cnt;
if(l==r)return;
int mid=l+r>>;
if(x<=mid)ins(tr[d].l,l,mid,x);
else ins(tr[d].r,mid+,r,x);
}
int merge(int x,int y){
if(!x||!y)return x+y;
int d=++cnt;
tr[d].l=merge(tr[x].l,tr[y].l);
tr[d].r=merge(tr[x].r,tr[y].r);
return d;
}
bool query(int d,int l,int r,int x,int y){
if(!d)return ;
if(l==x&&r==y)return ;
int mid=l+r>>;
if(x<=mid&&query(tr[d].l,l,mid,x,min(y,mid)))return ;
if(y>mid&&query(tr[d].r,mid+,r,max(x,mid+),y))return ;
return ;
}
void build(){
for(int i=;i<=tot;++i)b[mx[i]]++;
for(int i=;i<=tot;++i)b[i]+=b[i-];
for(int i=tot;i>=;--i)c[b[mx[i]]--]=i;
for(int i=tot;i>=;--i){
ins(root[c[i]],,n,id[c[i]]);
root[fa[c[i]]]=merge(root[fa[c[i]]],root[c[i]]);
}
}
int main(){
cin>>n;
scanf("%s",s+);
for(int i=;i<=n;++i)add(i,s[i]-'a');
build();
ans=;
for(int i=;i<=tot;++i){
int x=c[i];
if(fa[x]==)dp[x]=,pos[x]=x;
else if(query(root[pos[fa[x]]],,n,id[x]-mx[x]+mx[pos[fa[x]]],id[x]-)){dp[x]=dp[fa[x]]+;pos[x]=x;}
else {dp[x]=dp[fa[x]];pos[x]=pos[fa[x]];}
ans=max(ans,dp[x]);
}
cout<<ans;
return ;
}

cf 700e(sam好题,线段树维护right)的更多相关文章

  1. CF - 1108 E 枚举上界+线段树维护

    题目传送门 枚举每个点作为最大值的那个点.然后既然是作为最大值出现的话,那么这个点就是不需要被减去的,因为如果最小值也在这个区间内的话,2者都减去1,对答案没有影响,如果是最小值不出现在这个区间内的话 ...

  2. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  3. Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...

  4. 洛谷 P7879 -「SWTR-07」How to AK NOI?(后缀自动机+线段树维护矩乘)

    洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否 ...

  5. [BZOJ 1018] [SHOI2008] 堵塞的交通traffic 【线段树维护联通性】

    题目链接:BZOJ - 1018 题目分析 这道题就说明了刷题少,比赛就容易跪..SDOI Round1 Day2 T3 就是与这道题类似的..然而我并没有做过这道题.. 这道题是线段树维护联通性的经 ...

  6. 洛谷P4243/bzoj1558 [JSOI2009]等差数列(线段树维护差分+爆炸恶心的合并)

    题面 首先感谢这篇题解,是思路来源 看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分.再注意点细节,\(A\)操作完美解决 然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎 ...

  7. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  8. bzoj 4184: shallot (线段树维护线性基)

    题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...

  9. FJUT3568 中二病也要敲代码(线段树维护区间连续最值)题解

    题意:有一个环,有1~N编号,m次操作,将a位置的值改为b,问你这个环当前最小连续和多少(不能全取也不能不取) 思路:用线段树维护一个区间最值连续和.我们设出两个变量Lmin,Rmin,Mmin表示区 ...

随机推荐

  1. python3:实现字符串的全排列(有重复字符)

    抛出问题 求任意一个字符串的全排列组合,例如a='123',输出 123,132,213,231,312,321. 解决方案 #字符串任意两个位置字符交换 def str_replace(str, x ...

  2. qrcode生成二维码

    代码: <!DOCTYPE html> <html lang="en" style="height: 99%"> <head> ...

  3. 代码:CSS——reset.css

    http://www.cnblogs.com/qq21270/p/5577856.html 图片列表 A链接标签: /* 链接样式.文字颜色 */ a{color:#666;text-decorati ...

  4. 为何要使用ViewModel

    ViewModel类是用来存储和管理与UI相关的数据,在设计之初就考虑到生命周期的影响.ViewModel允许数据在屏幕旋转等配置变化后存活. Android framework管理UI控制器(如Ac ...

  5. Django02-路由系统urls

    一.路由配置系统(URLconf) 分为:静态路由动态路由 1.URL配置 URL配置(URLconf)就像Django所支撑网站的目录.它的本质是URL与该URL调用的视图函数之间的映射表 语法: ...

  6. Delphi RTTI的应用(一)

    1.获取DbgrdiEH 某一个选项的属性.加载到ComBox procedure TForm1.FormCreate(Sender: TObject); var PropInfo: PPropInf ...

  7. Jekins在Tomcat上的安装和配置

    首先,apache.org的官网下载Apache Tomcat. 第二:点击/一步一步的安装tomcat,没有任何需要说明的难点. 我偏好选择安装tomcat可执行文件,这样可以在安装时就自动吧tom ...

  8. 使用LESS对CSS进行预处理

    LESS 做为 CSS 的一种形式的扩展,它并没有阉割 CSS 的功能,而是在现有的 CSS 语法上,添加了很多额外的功能,所以学习 LESS 是一件轻而易举的事情. 变量 请注意 LESS 中的变量 ...

  9. 亿级 ELK 日志平台构建部署实践

    本篇主要讲工作中的真实经历,我们怎么打造亿级日志平台,同时手把手教大家建立起这样一套亿级 ELK 系统.日志平台具体发展历程可以参考上篇 「从 ELK 到 EFK 演进」 废话不多说,老司机们座好了, ...

  10. 安装Python-Jenkins

    有两种方式安装: ①有网络:sudo pip install python-jenkins ②无网络: 下载文件:https://pypi.org/project/python-jenkins/#fi ...