NLP问题如果要转化为机器学习问题,第一步是要找一种方法把这些符号数学化。

有两种常见的表示方法:

  One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。例如[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]。这种表示方法会造成“词汇鸿沟”现象:不能反映词与词之间的语义关系,因为任意两个词都是正交的;而且,这种表示的维度很高。

  Distributed Representation,表示的一种低维实数向量,维度以 50 维和 100 维比较常见,这种向量的表示不是唯一的。例如:[0.792, −0.177, −0.107, 0.109, −0.542, …]。这种方法最大的贡献就是让相关或者相似的词,在距离上更接近了。向量的距离可以用最传统的欧氏距离来衡量,也可以用 cos 夹角来衡量。

  

  如果用传统的稀疏表示法表示词,在解决某些任务的时候(比如构建语言模型)会造成维数灾难。使用低维的词向量就没这样的问题。同时从实践上看,高维的特征如果要使用 Deep Learning,其复杂度太高,因此低维的词向量使用的更多。 并且,相似词的词向量距离相近,这就让基于词向量设计的一些模型自带平滑功能。word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,word2vec模型其实就是简单化的神经网络。随便找了张图:

  输入是One-Hot Vector,Hidden Layer没有激活函数,也就是线性的单元。Output Layer维度跟Input Layer的维度一样,用的是Softmax回归。我们要获取的dense vector其实就是Hidden Layer的输出单元。

  word2vec主要分为CBOW(Continuous Bag of Words)和Skip-Gram两种模式。CBOW是从原始语句推测目标字词;而Skip-Gram正好相反,是从目标字词推测出原始语句。CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。

NLP笔记:词向量和语言模型的更多相关文章

  1. Deep Learning in NLP (一)词向量和语言模型

    原文转载:http://licstar.net/archives/328 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果.关于这 ...

  2. Word2Vec之Deep Learning in NLP (一)词向量和语言模型

    转自licstar,真心觉得不错,可惜自己有些东西没有看懂 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享.其中必然有局限性,欢迎各种交 ...

  3. 【NLP】自然语言处理:词向量和语言模型

    声明: 这是转载自LICSTAR博士的牛文,原文载于此:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领 ...

  4. NLP︱高级词向量表达(二)——FastText(简述、学习笔记)

    FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...

  5. NLP之词向量

    1.对词用独热编码进行表示的缺点 向量的维度会随着句子中词的类型的增大而增大,最后可能会造成维度灾难2.任意两个词之间都是孤立的,仅仅将词符号化,不包含任何语义信息,根本无法表示出在语义层面上词与词之 ...

  6. NLP获取词向量的方法(Glove、n-gram、word2vec、fastText、ELMo 对比分析)

    自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方 ...

  7. NLP︱高级词向量表达(三)——WordRank(简述)

    如果说FastText的词向量在表达句子时候很在行的话,GloVe在多义词方面表现出色,那么wordRank在相似词寻找方面表现地不错. 其是通过Robust Ranking来进行词向量定义. 相关p ...

  8. NLP︱高级词向量表达(一)——GloVe(理论、相关测评结果、R&python实现、相关应用)

    有很多改进版的word2vec,但是目前还是word2vec最流行,但是Glove也有很多在提及,笔者在自己实验的时候,发现Glove也还是有很多优点以及可以深入研究对比的地方的,所以对其进行了一定的 ...

  9. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

随机推荐

  1. Java JDK1.5、1.6、1.7新特性整理

    转载请注明出处:http://www.cnblogs.com/tony-yang-flutter 一.Java JDK1.5的新特性 1.泛型: List<String> strs = n ...

  2. 转:git合并冲突解决方法

    git合并冲突解决方法 1.git merge冲突了,根据提示找到冲突的文件,解决冲突 如果文件有冲突,那么会有类似的标记 2.修改完之后,执行git add 冲突文件名 3.git commit注意 ...

  3. 视频播放flv player的使用

    JW FLV PLAYER 中文文档 使用方法:如果你仅需要播放一个FLV文件[例如“video.flv”],那么只要把“video.flv”和压缩包内的 flvplayer.swf复制到同一个目录内 ...

  4. __iter___和__next__方法

    __iter__方法变成一个迭代器类对象, 迭代器类要实现__next__方法

  5. [Noi2002]Savage(欧几里得拓展)

    题意:在一个岛上,有n个野人.这些人开始住在c号洞穴,每一年走p个洞,而且他的生命有L年.问如果岛上的洞穴为一个圈,那么这个圈至少有多少个,才能使他们每年都不在同一个洞穴里. 分析:先假设一种简单的情 ...

  6. linux(centos 7)下安装elasticsearch 5 的 IK 分词器

    (一)到IK 下载 对应的版本(直接下载release版本,避免mvn打包),下载后是一个zip压缩包 (二)将压缩包上传至elasticsearch 的安装目录下的plugins下,进行解压,运行如 ...

  7. JSON数据解析(自写)

    自写的JSON解析数据 void setup() { Serial.begin(115200); char chArray[50] = "some characters"; Str ...

  8. CentOS6.9 安装Oracle 11G 版本11.2.0.1.0

    安装实例与数据库 CentOS6.9 安装Oracle 11G 版本11.2.0.1.0 一.检查系统类别. 查看 系统的类别,这里是 64位系统:[root@localhost ~]# uname ...

  9. 关于Java并发编程的总结和思考

    编写优质的并发代码是一件难度极高的事情.Java语言从第一版本开始内置了对多线程的支持,这一点在当年是非常了不起的,但是当我们对并发编程有了更深刻的认识和更多的实践后,实现并发编程就有了更多的方案和更 ...

  10. [转]VC++宏与预处理使用方法总结

    原文链接:VC 宏与预处理使用方法总结 原文链接:VC预处理指令与宏定义的妙用