UVA 10129 Play on Words (欧拉通路)
本文链接:http://www.cnblogs.com/Ash-ly/p/5398627.html
题意:
输入N(N <= 100000)个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同(例如:acm,malform,mouse)。每个单词最多包含 1000 个小写字母。输入中可以有重复的单词。
思路:
把一个字母的两端开成节点,单词看成有向边,若问题有借,当且仅当图中存在欧拉通路。所有只需要判断由单词而构建的图是否存在欧拉通路,由于是有向边,所以利用有向图欧拉通路的判定就可以了。
判定条件
(1):底图是连通图
(2):可以有两个奇点,其中一个出度比入度大 1,另外一个入度比出度大1.
对于条件1,在这里用并查集判断了,条件2统计每个点的出度,入度,加以判断就行了.
代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std; const int maxV = ;
int m;
int pre[maxV + ];
int outdegree[maxV + ];
int indegree[maxV + ]; int Find(int x){return x == pre[x] ? x : pre[x] = Find(pre[x]); }//并查集的查找
void initPre(){ for(int i = ; i <= maxV; i++) pre[i] = i; }//初始化并查集的数组 int mix(int x, int y)//并查集的合并
{
int fx = Find(x), fy = Find(y);
if(fx != fy) pre[fx] = fy;
} bool isConnct()//判断图是否连通,即所有的点都在一个集合里面
{
int cnt = ;
for(int i = ; i <= maxV; i++)if( (outdegree[i] != || indegree[i] != ) && pre[i] == i) cnt++;
if(cnt == )return true;
return false;
} bool isEulur()//是否存在欧拉通路
{
int cnt = ;
int flag = ;
for(int i = ; i <= ; i++)
if((outdegree[i] != || indegree[i] != ) && (indegree[i] != outdegree[i]))//判断奇点,方法不唯一。
{
cnt++;
flag += (indegree[i] - outdegree[i]);
if(flag > || flag < -) return false;
}
if(cnt == || cnt == && flag == ) return true;
return false;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &m);
initPre();
memset(indegree, , sizeof(indegree));
memset(outdegree, , sizeof(outdegree));
for(int i = ; i <= m; i++)
{
char word[ + ];
scanf("%s", word);
int u = word[] - 'a' + ;
int len = strlen(word);
int v = word[len - ] - 'a' + ;
mix(u, v);
++outdegree[u];
++indegree[v];
}
if(isEulur() && isConnct()) printf("Ordering is possible.\n");
else printf("The door cannot be opened.\n");
}
return ;
}
UVA 10129 Play on Words (欧拉通路)的更多相关文章
- ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)
判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- poj 2513 连接火柴 字典树+欧拉通路 好题
Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27134 Accepted: 7186 ...
- poj2513- Colored Sticks 字典树+欧拉通路判断
题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...
- hdu1116有向图判断欧拉通路判断
Play on Words Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash
题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点 或者 ...
- 欧拉回路&欧拉通路判断
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...
- POJ2513Colored Sticks(欧拉通路)(字典树)(并查集)
Colored Sticks Time Limit: 5000MS Memory ...
- HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路
给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...
随机推荐
- python tarfile模块打压缩包,arcname的用法
D:\szh\noses文件夹下有子文件夹和文件 with tarfile.open('E:\\szh.tar', "w") as tar: tar.add('D:\\ ...
- python - web自动化测试 - 元素操作 - 定位
# -*- coding:utf-8 -*- ''' @project: web学习 @author: Jimmy @file: find_ele.py @ide: PyCharm Community ...
- 异步fifo的设计(FPGA)
本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据) ...
- python杂七杂八知识点
1.中文编码问题解决办法:# _*_ coding:UTF8 _*_ 2.numpy.ndArray a = array([[1,2,3], [4, 5, 6]]) 3.numpy.argsort() ...
- PAT——甲级1042:Shuffling Mashine
终于做到甲级了 就一个感觉....题目是真的看不懂,亏我还是四六级都过了的人....可是看完题愣是一点都不懂是什么意思. 1042 Shuffling Machine (20 point(s)) Sh ...
- 团队项目-第七次scrum 会议
时间:11.3 时长:30分钟 地点:F楼1039教室 工作情况 团队成员 已完成任务 待完成任务 解小锐 学习cocos creator样例 修复员工招聘时bug 陈鑫 完成fire()与UI的对接 ...
- restorator 运行后其他所有EXE文件都无法运行的解决方案
昨天要反编译一个EXE,用RESTORATOR来查看资源罗列情况,倒霉的事情发生了,所有EXE文件点右键后‘打开’都没有了,刚开始以为中度了,进安全模式看,发现文件都没有异常,并且在安全模式下问题照样 ...
- Spring MVC表单标签
从Spring 2.0开始,Spring MVC开始全面支持表单标签,通过Spring MVC表单标签,我们可以很容易地将控制器相关的表单对象绑定到HTML表单元素中. form标签 和使用任 ...
- PB数据窗口中的几种状态及应用
数据窗口的状态主要有以下几种: 1)New! 2)NewModified! 3)DataModified! 4)NotModified! 数据窗口可以利用这些状态标志判断数据是否被修改过. 记录和字段 ...
- flutter channel master
flutter可能是未来跨平台开发的又一技术框架,那么对于一个app,我们不可能完全用flutter来开发,那么就意味着我们需要在已有的Android和iOS代码中去集成flutter.目前这一技术还 ...