570D - Tree Requests

题意

给出一棵树,每个节点上有字母,查询 u k,问以 u 为根节点的子树下,深度为 k 的所有子节点上的字母经过任意排列是否能构成回文串。

分析

一个数组 \(C[i][j]\) 表示深度为 \(i\) 字母为 \(j\) 的数量,数组 \(odd[i]\) 表示深度为 \(i\) 时出现次数为奇数的字母种数。

如果想要构成回文串,那么某一深度下出现的次数为奇数的字母不能超过一种,注意如果字符串长度为 0 也叫回文串。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 5e5 + 10;
int n;
int fa[MAXN], son[MAXN], dep[MAXN], siz[MAXN];
int col[MAXN];
int cnt, head[MAXN];
struct Edge {
int to, next;
} e[MAXN << 1];
struct Ex {
int x, c;
};
vector<Ex> ex[MAXN];
void addedge(int u, int v) {
e[cnt].to = v; e[cnt].next = head[u]; head[u] = cnt++;
e[cnt].to = u; e[cnt].next = head[v]; head[v] = cnt++;
}
void dfs(int u) {
siz[u] = 1;
son[u] = 0;
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u]) {
fa[e[i].to] = u;
dep[e[i].to] = dep[u] + 1;
dfs(e[i].to);
if(siz[e[i].to] > siz[son[u]]) son[u] = e[i].to;
siz[u] += siz[e[i].to];
}
}
}
int vis[MAXN], ans[MAXN];
int mk[MAXN];
int C[MAXN][30], odd[MAXN], num[MAXN];
void change(int u, int c) {
C[dep[u]][mk[u]] += c;
num[dep[u]] += c;
if(C[dep[u]][mk[u]] & 1) odd[dep[u]]++;
else odd[dep[u]]--;
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && !vis[e[i].to]) change(e[i].to, c);
}
}
void dfs1(int u, int flg) {
for(int i = head[u]; ~i; i = e[i].next) {
if(e[i].to != fa[u] && e[i].to != son[u]) dfs1(e[i].to, 1);
}
if(son[u]) {
dfs1(son[u], 0);
vis[son[u]] = 1;
}
change(u, 1);
int sz = ex[u].size();
for(int i = 0; i < sz; i++) {
ans[ex[u][i].x] = (odd[ex[u][i].c] <= 1 || num[ex[u][i].c] == 0);
}
if(son[u]) vis[son[u]] = 0;
if(flg) change(u, -1);
}
char ss[MAXN];
int main() {
int m;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof head);
cnt = 0;
dep[1] = 1;
for(int i = 2; i <= n; i++) {
int x;
scanf("%d", &x);
addedge(i, x);
}
scanf("%s", ss);
for(int i = 0; i < n; i++) {
mk[i + 1] = ss[i] - 'a';
}
dfs(1);
for(int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
ex[x].push_back(Ex{i, y});
}
dfs1(1, 0);
for(int i = 0; i < m; i++) {
puts(ans[i] ? "Yes" : "No");
}
return 0;
}

Codeforces 570D - Tree Requests(树上启发式合并)的更多相关文章

  1. Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

    http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...

  2. codeforces 375D . Tree and Queries 启发式合并 || dfs序+莫队

    题目链接 一个n个节点的树, 每一个节点有一个颜色, 1是根节点. m个询问, 每个询问给出u, k. 输出u的子树中出现次数大于等于k的颜色的数量. 启发式合并, 先将输入读进来, 然后dfs完一个 ...

  3. Codeforces 570D TREE REQUESTS dfs序+树状数组

    链接 题解链接:点击打开链接 题意: 给定n个点的树.m个询问 以下n-1个数给出每一个点的父节点,1是root 每一个点有一个字母 以下n个小写字母给出每一个点的字母. 以下m行给出询问: 询问形如 ...

  4. Codeforces 570D - Tree Requests【树形转线性,前缀和】

    http://codeforces.com/contest/570/problem/D 给一棵有根树(50w个点)(指定根是1号节点),每个点上有一个小写字母,然后有最多50w个询问,每个询问给出x和 ...

  5. CodeForces 570D - Tree Requests - [DFS序+二分]

    题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...

  6. codeforces 570D.Tree Requests

    [题目大意]: 给定一棵树,树的每个节点对应一个小写字母字符,有m个询问,每次询问以vi为根节点的子树中,深度为hi的所有节点对应的字符能否组成一个回文串: [题目分析]: 先画个图,可看出每次询问的 ...

  7. 总结-DSU ON TREE(树上启发式合并)

    考试遇到一道题: 有一棵n个点的有根树,每个点有一个颜色,每次询问给定一个点\(u\)和一个数\(k\),询问\(u\)子是多少个不同颜色节点的\(k\)级祖先.n<=500000. 显然对每一 ...

  8. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  9. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

随机推荐

  1. Python 字符串格式化输出方式

    字符串格式化有两种方式:百分号方式.format方式. 其中,百分号方式比较老,而format方式是比较先进的,企图替代古老的方式,目前两者共存. 1.百分号方式 格式:%[(name)][flags ...

  2. java初学1

    1.Java主要技术和分支以及应用领域 (1)Java SE Java Platform,Standard Edition,Java SE 以前称为J2SE.它允许开发和部署在桌面.服务器.嵌入式环境 ...

  3. nyoj 题目44 子串和

    子串和 时间限制:5000 ms  |  内存限制:65535 KB 难度:3   描述 给定一整型数列{a1,a2...,an},找出连续非空子串{ax,ax+1,...,ay},使得该子序列的和最 ...

  4. Asp.net WebApi添加帮助文档

    一.创建一个空的WebApi站点 二.新增一个名为Test的API控制器,实现部分方法(方法和类要添加文档说明注释) 1. 添加一个用户数据模型UserInfo.cs,代码如下: /// <su ...

  5. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑 离散化+倍增Floyd

    题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100) ...

  6. task [最大权闭合子图]

    题面 思路 其实仔细读透就发现,是一个最大权闭合子图的模型 套进网络流里面就挺好做的了 可以选择重载这道题里面的一些运算(加减,取最小值),这样比较方便 Code #include<iostre ...

  7. JavaScript jQuery 中定义数组与操作及jquery数组操作 http://www.jb51.net/article/76601.htm

    首先给大家介绍javascript jquery中定义数组与操作的相关知识,具体内容如下所示: 1.认识数组 数组就是某类数据的集合,数据类型可以是整型.字符串.甚至是对象Javascript不支持多 ...

  8. powerdesign相关

    1.安装程序和汉化放百度云了 2.打印错误处理 http://jingyan.baidu.com/article/c45ad29cd84e4b051753e2c3.html 3.导出sql http: ...

  9. Postfix+Sasl+Courier-authlib+Dovecot+MySQL+extmail 邮件系统部署

    # yum remove postfix ##删除系统自带postfix# userdel postfix# groupdel postdrop# groupadd -g 2525 postfix# ...

  10. Windows域同步检查repadmin

    C:\Users\>repadmin /show replUsage: repadmin <cmd> <args> [/u:{domain\user}] [/pw:{pa ...