特殊矩阵

通用特殊矩阵

zeros函数:产生全0矩阵,即零矩阵。

ones函数:产生....1矩阵,即幺矩阵。

eye函数:产生对角线为1的矩阵,当矩阵是方正时,得到单位矩阵。

rand函数:产生(0,1)区间均匀分布的随机矩阵。

randn函数:产生均值为0,方差为1的标准正态分布随机矩阵。

------------------------------------------------------------------------------------------------

zeros(m):产生mxm的零矩阵。

zeros(m,n):....mxn...

zeros(size(A)):产生跟A相同大小的矩阵,A是几维,零矩阵为几维。

fix(a+(b-a+1)*x):产生[a,b]区间上均匀分布的随机数。

u+fx:均值为u,方差为f^2的随机数。

eye(m,n)产生mxn的单位矩阵、

m与n不相等时,则会产生一行或一列0.

(1)魔族矩阵:magic(3)    每行,列对角都为15(1+2+3+...+n^2)/n=(n+n^3)/2

(2)范德蒙矩阵:v=[v1,v2....,vn];

...

vander(v)..............vander(1:5)

(3)希尔伯特矩阵

(4)伴随矩阵

(5)帕斯卡矩阵

根据:二项式定理,(x+y)^n随n的增长展开后为杨辉三角。

而将二项式洗漱依次填写在左侧对角线上,然后提取左侧的n行n列元素即为n阶帕斯卡矩阵。

p=pascal(5)                     inv(p)逆矩阵

矩阵变换

 对角矩阵:只有对角线上有非零元素的矩阵
数量矩阵:....相等...
单位矩阵:...都为1...
提取对角线:diag(A):提取矩阵A主对角元素产生一个列向量
 
diag(A,k)提取第k条对角线,产生一个列向量。
 
对角阵:
 
diag(v):以列向量v为主对角线元素,产生对角矩阵。
 
diag(v,k):...第k条....
 
a*diag(1:3):主对角线分别乘以1,2,3.
 
a(:,1)*diag(a)
a第一列分别对应与主对角线相乘
 
a.*diag(i)  a的对角线与1-3对应相乘                      a*diag(1:3)   a的第一列乘1  第二列乘2  第三列乘3
 
求上三角矩阵:对角线以下为0,
 
triu(A):提主对角线以上的与元素。                   triu(A,k)......k条对角线以上
 
下三角矩阵:.....以上为0     tril与triu用法相同
 

矩阵的转置:

 
转置运算符是小数点后接单引号(.')=>相当于由横变为纵排列
 
共轭转置:运算符是( ' ),它在转置基础上还要取每个数的复共轭。
 
旋转:
 
rot90(A,k):将矩阵A逆时针旋转90度的k倍,k为1可省略。
 
翻转:
 
fliplr(A):对矩阵A实施左右翻转。           flipud(A):..........上下......(第一与倒数第一...)
 
逆矩阵:对于同阶的矩阵A,B若AB=BA=I(I为单位矩阵),则A,B互为逆矩阵。
 
inv(A):求A的逆矩阵...(参考例题)

MATLAB特殊矩阵以及矩阵转置的更多相关文章

  1. MATLAB命令大全和矩阵操作大全

    转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵 ...

  2. MATLAB 求两个矩阵的 欧氏距离

    欧式距离定义: 欧式距离公式有如下几种表示方法: MATLAB 求两个矩阵的 欧氏距离 : 如果定义两个矩阵分别为a,b则定义c=(a-b).^2所求距离d=sqrt(sum(c(:)))

  3. MATLAB 的向量,矩阵和阵列命令

    MATLAB 的向量,矩阵和阵列命令:

  4. Python 矩阵与矩阵以及矩阵与向量的乘法

    import numpy as np numpy模块的array相乘时,有两种方式:一是矩阵形式,二是挨个相乘. 需要用矩阵形式相乘时,则要用np.dot()函数. #矩阵与矩阵相乘a = np.ar ...

  5. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  6. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  7. POJ - 3233 矩阵套矩阵

    题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...

  8. hdu 1588 Gauss Fibonacci(矩阵嵌矩阵)

    题目大意: 求出斐波那契中的 第 k*i+b 项的和. 思路分析: 定义斐波那契数列的矩阵 f(n)为斐波那契第n项 F(n) = f(n+1) f(n) 那么能够知道矩阵 A = 1 1 1  0 ...

  9. AcWing 206. 石头游戏 矩阵乘法|矩阵快速幂

    AcWing 206. 石头游戏 石头游戏在一个 n 行 m 列 (1≤n,m≤8) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数字指明. 操作序列是一个长度不 ...

随机推荐

  1. Java50道经典习题-程序43 求奇数个数

    题目:求0—7所能组成的奇数个数,奇数中不包含重复数字. public class Prog43 { public static void main(String[] args) { //0-7能组成 ...

  2. python语言积累

    调试打印堆栈 import traceback traceback.print_exc() #打印堆栈的详细信息

  3. [转]Marshaling a SAFEARRAY of Managed Structures by P/Invoke Part 2.

    1. Introduction. 1.1 In part 1 of this series of articles, I explained how managed arrays may be tra ...

  4. ASP.NET MVC 之各种jQuery提交模式实例

    1.$.ajax提交 var _data = { "dictItemID": dictItemID, "itemType": itemType, "i ...

  5. gRPC官方文档(通讯协议)

    文章来自gRPC 官方文档中文版 HTTP2 协议上的 gRPC 本文档作为 gRPC 在 HTTP2 草案17框架上的实现的详细描述,假设你已经熟悉 HTTP2 的规范.产品规则采用的是ABNF 语 ...

  6. [poj 1185] 炮兵阵地 状压dp 位运算

    Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用&quo ...

  7. 【规律】Gym 100739L Many recursions

    给出a,求递归式g(k)的初始条件g(0); 可以看出来g(a) = 1,从后往前推.写个模拟程序可以看出来其实g(0) = 2^a,那么就是一个简单地快速幂取模问题了. #include <c ...

  8. P5056 【模板】插头dp

    \(\color{#0066ff}{ 题目描述 }\) 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? \(\color{#0066ff}{输入格式}\) 第1 ...

  9. kuangbin专题十六 KMP&&扩展KMP HDU3336 Count the string

    It is well known that AekdyCoin is good at string problems as well as number theory problems. When g ...

  10. php字符串中去除html标签

    strip_tags() 函数剥去字符串中的 HTML.XML 以及 PHP 的标签.