点此看题面

大致题意: 有\(N\)名忍者,每名忍者有三个属性:上司\(B_i\),薪水\(C_i\)和领导力\(L_i\)。你要选择一个忍者作为管理者,然后在所有被他管理的忍者中选择若干名忍者,使薪水总和不超过预算\(M\)。现让你最大化被派遣的忍者总数乘以管理者的领导力水平。

关于左偏树

这道题是一道比较裸的左偏树板子题。

左偏树,主要用途是实现堆的合并,在这一类的题目中还是比较实用的。

大致思路

如果你会左偏树,那么这题就是一道水题。

首先考虑遍历题目中给出的树,然后对每一个节点开一个大根堆,每次把超过预算的多余部分弹出,更新\(ans\)之后再与父亲的堆进行合并。

一个细节就是当前节点可能会被弹出,所以我们要用\(Top_x\)来记录当前节点堆的堆顶,然后对\(Top_x\)进行操作。

代码

#include<bits/stdc++.h>
#define N 100000
#define swap(x,y) (x^=y^=x^=y)
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define LL long long
using namespace std;
int n,m,ee=0,lnk[N+5],Top[N+5],cnt[N+5],Cost[N+5],Val[N+5];LL ans=0,tot[N+5];
struct edge
{
int to,nxt;
}e[N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (void)(putchar(ch))
int Top,FoutSize;char ch,*A,*B,Fin[Fsize],Fout[Fsize],Stack[Fsize];
public:
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
inline void write(LL x) {if(!x) return pc('0');while(x) Stack[++Top]=x%10+48,x/=10;while(Top) pc(Stack[Top--]);}
}F;
class Class_LeftistTree//左偏树模板
{
private:
struct Tree
{
int Val,Dis,Exist,Father,Son[2];
Tree(int x=0):Val(x){Dis=Father=Son[0]=Son[1]=0,Exist=1;}
}node[N+5];
inline int Merge(int x,int y)
{
if(!x||!y) return x+y;
if(node[x].Val<node[y].Val) swap(x,y);
if(node[node[x].Son[1]=Merge(node[x].Son[1],y)].Father=x,node[node[x].Son[0]].Dis<node[node[x].Son[1]].Dis) swap(node[x].Son[0],node[x].Son[1]);
return node[x].Dis=node[node[x].Son[1]].Dis+1,x;
}
inline int TopPos(int x) {while(node[x].Father) x=node[x].Father;return x;}
public:
Class_LeftistTree() {node[0].Dis=-1,node[0].Exist=0;}
inline void Init(int n,int *data) {for(register int i=1;i<=n;++i) node[i]=Tree(data[i]);}
inline void Union(int x,int y) {if((x=TopPos(x))^(y=TopPos(y))&&node[x].Exist&&node[y].Exist) Merge(x,y);}
inline int PopTop(int x) {return node[x=TopPos(x)].Val=node[x].Dis=-1,node[x].Exist=0,node[node[x].Son[0]].Father=node[node[x].Son[1]].Father=0,Merge(node[x].Son[0],node[x].Son[1]);}
inline int TopVal(int x) {return node[TopPos(x)].Val;}
}LeftistTree;
inline void dfs(int x)//遍历
{
register int i;
for(i=lnk[Top[x]=x],tot[x]=Cost[x],cnt[x]=1;i;i=e[i].nxt) dfs(e[i].to),LeftistTree.Union(x,Top[e[i].to]),tot[x]+=tot[e[i].to],cnt[x]+=cnt[e[i].to];//先遍历子节点,然后从子节点更新信息
while(tot[x]>m) tot[x]-=LeftistTree.TopVal(Top[x]),--cnt[x],Top[x]=LeftistTree.PopTop(Top[x]);//弹出多余的元素
Gmax(ans,1LL*Val[x]*cnt[x]);//更新ans
}
int main()
{
register int i,x,rt;
for(F.read(n),F.read(m),i=1;i<=n;++i) F.read(x),F.read(Cost[i]),F.read(Val[i]),(x?add(x,i):rt=i);
return LeftistTree.Init(n,Cost),dfs(rt),F.write(ans),0;
}

【BZOJ2809】[APIO2012] dispatching(左偏树例题)的更多相关文章

  1. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  2. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  3. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

  4. [Apio2012]dispatching 左偏树

    题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...

  5. [Apio2012]dispatching 左偏树做法

    http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...

  6. APIO2012 派遣dispatching | 左偏树

    题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...

  7. BZOJ2809 dispatching(左偏树)

    在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...

  8. [APIO2012]派遣 左偏树

    P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...

  9. 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]

    题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...

随机推荐

  1. es6实现类的多重继承

    1.类的多种继承,将多个类的接口“混入”(mix in)另一个类. function mix(...mixins) { class Mix { // 如果不需要拷贝实例属性下面这段代码可以去掉 // ...

  2. hdu6070(分数规划/二分+线段树区间更新,区间最值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...

  3. 在CMD下运用管理员权限

    方法一:鼠标右键 这个方法比较比较普通,点开开始找到cmd,右击鼠标“以管理员身份运行(A)”这样调用就是管理员的权限: 方法二:快捷模式 在点开win+R后,选择“以管理员身份运行”,然后确定:可以 ...

  4. mycat分片规则之分片枚举(sharding-by-intinfile)

    mycat分片规则之分片枚举(sharding-by-intinfile) http://blog.51cto.com/goome/2058959 mycat安装及分片初体验 https://blog ...

  5. 【ACM】括号配对问题 - 栈

    括号配对问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在,有一行括号序列,请你检查这行括号是否配对.   输入 第一行输入一个数N(0<N<=1 ...

  6. Microsoft JET Database Engine (0x80004005)未指定的错误解决

    Microsoft JET Database Engine (0x80004005)未指定的错误,这个错误只有在使用Access数据库时才能出现 出现以上问题,可以使用以下步骤进行解决问题: 1.系统 ...

  7. Spark Mllib里的如何对单个数据集用斯皮尔曼计算相关系数

    不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...

  8. 前端专业术语: shim 和 Polyfill,了解下

    在学习和使用 JavaScript 的时候,我们会经常碰到两个术语:shim 和 polyfill.它们有许多定义和解释,意思相近又有差异. Shim Shim 指的是在一个旧的环境中模拟出一个新 A ...

  9. linux下使用shell脚本批处理命令

    1.新建脚本touch first.sh 2.写入命令vi first.sh #!/bin/bash #publish service and api echo "copy file&quo ...

  10. Day1上

    上午发挥强差人意.心态不好,编译器一直报错,心里比较慌. t1 每一个P枚举底数 .可二分 T2 暴力30  打标60 x^3-y^3=(x-y)*(x^2+xy+y^2). x-y==1.  ! p ...