题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3790

题目大意:

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

解题思路:

在最短距离的基础上加上一个数组维护花费,每次更新时,先保持距离最短,在同等距离的时候保持花费最小。(注意有重边,更新最短距离和在该距离下的最小花费)

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
int Map[maxn][maxn];
int Map1[maxn][maxn];
int v[maxn], d[maxn], d1[maxn];
int n, m;
void dijkstra(int s, int t)
{
memset(v, , sizeof(v));
for(int i = ; i <= n; i++)d[i] = (i == s ? : INF);
for(int i = ; i <= n; i++)d1[i] = (i == s ? : INF);
for(int i = ; i < n; i++)
{
int x, m = INF, m1 = INF;
for(int i = ; i <= n; i++)
{
if(v[i])continue;
if(m > d[i])
{
m = d[i];
m1 = d1[i];
x = i;
}
else if(m == d[i] && m1 > d1[i])
{
m1 = d1[i];
x = i;
}
}
v[x] = ;
for(int i = ; i <= n; i++)
{
if(v[i])continue;
if(d[i] > d[x] + Map[x][i])
{
d[i] = d[x] + Map[x][i];
d1[i] = d1[x] + Map1[x][i];
}
else if(d[i] == d[x] + Map[x][i] && d1[i] > d1[x] + Map1[x][i])
{
d1[i] = d1[x] + Map1[x][i];
}
}
}
printf("%d %d\n", d[t], d1[t]);
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF && n)
{
int u, v, w, c;
memset(Map, INF, sizeof(Map));
memset(Map1, INF, sizeof(Map1));
while(m--)
{
scanf("%d%d%d%d", &u, &v, &w, &c);
if(Map[u][v] > w)
{
Map[u][v] = Map[v][u] = w;
Map1[u][v] = Map1[v][u] = c;
}
else if(w == Map[u][v] && Map1[u][v] > c)
{
Map1[u][v] = Map1[v][u] = c;
}
}
scanf("%d%d", &u, &v);
dijkstra(u, v);
}
}

hdu-3790 最短路径问题---dijkstra两重权值的更多相关文章

  1. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  2. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  3. POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...

  4. HDU 3790(两种权值的迪杰斯特拉算法)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=3790 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    ...

  5. 题解报告:hdu 3790 最短路径问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  6. Dijkstra算法为什么权值不能为负

    Dijkstra算法当中将节点分为已求得最短路径的集合(记为S)和未确定最短路径的个集合(记为U),归入S集合的节点的最短路径及其长度不再变更,如果边上的权值允许为负值,那么有可能出现当与S内某点(记 ...

  7. HDU 1863:畅通project(带权值的并查集)

    畅通project Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. hdu1245 两个权值的最短路

    题意:       求s到t的最短路,如果路径相同求那么要求另一个权值尽可能的小. 思路:       水题,就是spfa的比较那个地方多了一个可以更新的机会,当(s_x[xin] > s_x[ ...

  9. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

随机推荐

  1. Java面向对象的三大特性 继承

    继承是类与类的一种关系,是“is a"关系  子类拥有父类的属性和方法,private除外 class 子类 extends 父类   方法的重写 调用方法时会优先调用子类的方法 重写时,返 ...

  2. Educational Codeforces Round 52F(树形DP,VECTOR)

    #include<bits/stdc++.h>using namespace std;int n,k;vector<int>son[1000007];int dp[100000 ...

  3. spring boot jpa 使用<S extends T> List<S> findAll(Example<S> example)查询数据

    直接上代码 //查询条件对象 TinventivePrinciple time = new TinventivePrinciple(); //设置需要查询的条件(赋值) time.setIsTime( ...

  4. 消耗战——dp+虚树

    题目 [题目描述] 在一场战争中,战场由 $n$ 个岛屿和 $n-1$ 个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为 $1$ 的岛屿,而且他们已经没有足够多 ...

  5. 60个DevOps开源工具,你在用哪些?

    你喜欢免费的东西吗?获得开发者社区支持的自动化,开源的工具是大家梦寐以求的.这里列举了 60 多款最棒的开源工具,可以帮助你很好的实行 DevOps. 一.开发工具 版本控制&协作开发 1.版 ...

  6. EOS 数据签名与公匙验证代码用例

    本文编写了一个小例子诠释了EOS是如何对数据签名与校验的,通过本文可以理解了签名的重要性和数据的不可篡改性. 系统: ubuntu  版本为EOS1.1.1 注:因为本文的程序是把EOS里面的钱包和f ...

  7. jmeter将参数值写入到指定文件(转)

    有时在测试过程中需要将测试过程中生成的参数保存下来,jmeter并没有此类功能,此时,可以 通过beanshell编写代码来实现 思路: 每次请求响应返回后,通过正则表达式获取到需要保存的值,通过Be ...

  8. Base64Utils

    package com.yundaex.common.crypto.base64; import java.io.ByteArrayInputStream; import java.io.ByteAr ...

  9. (转) Linux命令学习手册-arp命令

    arp 原文:http://blog.chinaunix.net/uid-9525959-id-3318814.html [功能] 管理系统的arp缓存. [描述] 用来管理系统的arp缓存,常用的命 ...

  10. 50个必备的jQuery代码段

    本文会给你们展示50个jquery代码片段,这些代码能够给你的javascript项目提供帮助.其中的一些代码段是从jQuery1.4.2才开始支持的做法,另一些则是真正有用的函数或方法,他们能够帮助 ...