hihoCoder hiho一下 第一周 #1032 : 最长回文子串 (Manacher)
题意:给一个字符串,求最长回文子串的长度。
思路:
(1)暴力穷举。O(n^3) -----绝对不行。
穷举所有可能的出现子串O(n^2),再判断是否回文O(n)。就是O(n*n*n)了。
(2)记录位置。O(n^3) -----绝对不行。
先扫一遍,记录每个字符在上一次出现的位置pos。每次考虑第i个字符,如果回文子串包括 i 的话,那么肯定在i的前面有一个跟第i个字符是一样的,利用之前记录的位置pos[i]可以找到与第i个相同的字符,如果i-pos[i]比之前发现的最长的子串max还短,那么不用比较了。如果更前面还有和第i个字符一样的,那么可以找到第pos[pos[i]]个,一定要找到区间比max还大的,才有比较的意义,除非前面已经没有相同字符的了。那么略过第i个,直奔下一个。记录位置需要O(n),考虑每个字符需要O(n),对其前面出现过的每个字符考虑O(n),一旦考虑就需要比较是否回文O(n),总的来说,后面3个是乘的关系O(n^3)。
#include <iostream>
#include <cstring>
#include <vector>
#include <stdio.h> using namespace std;
const int N=; char str[N];
char has[];
char pos[N]; bool isP(int j,int i)
{
while( j!=i && j!=--i)
{
if( str[j]!=str[i] )
return false;
j++;
}
return true;
} int fin_ex(int max, int i)
{
int j=pos[i];
while( i-j<=max && j>- ) //找到一个区间范围大于max的,开始算
j=pos[j];
return j;
} int cal(int len)
{
int max=, j;
for(int i=; i<len; i++)
{
j=fin_ex(max, i); //找相同的,且大于max的
while( j!=- && i-j>max ) //有相同
{
if(isP(j,i+)==true)
max=i-j+;
else
j=fin_ex(max, j); //不是回文,继续找
}
}
return max;
} int main()
{
//freopen("input.txt", "r", stdin);
int t;
cin>>t;
getchar();
while(t--)
{
gets(str);
int len=strlen(str);
for(int i=; i<; i++) has[i]=-; //初始化
for(int i=; i<len; i++) //记录上一次出现的位置
{
pos[i]=has[str[i]];
has[str[i]]=i;
} cout<<cal(len)<<endl;
}
return ;
}
TLE代码
(3)动态规划。时间O(n^2),空间O(n^2)----这空间已经不行了。
不考虑了,这空间接受不了。
(4)中心扩展。时间O(n^2),空间O(0)。-----这时间已经不行了。
扫一遍每个字符需要O(n),对每个字符进行回文判断需要O(n)。总的就O(n^2)。
#include <iostream>
#include <cstring>
#include <vector>
#include <stdio.h> using namespace std;
const int N=;
int len;
char str[N]; int isP(int i) //以i为中点的最长回文串的长度
{
int max1=;
//奇数
int tmp=max(i,len-i-); for(int j=; j<=tmp; j++)
{
if( str[i-j]==str[i+j] )
max1+=;
else
break;
} //偶数
int max2=;
tmp =max(i+, len-i-);
for(int j=; j<tmp; j++)
{
if( str[i-j]==str[i+j+] )
max2+=;
else
break;
}
return max1>max2? max1:max2;
} int cal()
{
int max=, tmp;
for(int i=; i<len-; i++) //考虑以i为中心的回文串
{
if( (tmp=isP(i))>max )
max=tmp;
}
return max; } int main()
{
//freopen("input.txt", "r", stdin);
int t;
cin>>t;
while(t--)
{
scanf("%s",str);
len=strlen(str);
if(len==){cout<<""<<endl;continue;}
cout<<cal()<<endl;
}
return ;
}
TLE代码
(5)Manacher算法。时间O(n),空间O(n)。------完全OK!
主要目的就是要减少计算量,在”中心扩展“法的基础上,节省更多的计算量。下面介绍这种处理方法。
步骤:
1)首先要插入一些奇怪的字符。作用是,使得每种可能出现的子串的长度变成永远是奇数。如 abba 变成 #a#b#b#a#。假设串长为n,那么其实是加入了n+1个#号,使得串长总是2*n+1,这样就必定是奇数了。而且在用”中心扩展“法时仍然是奇数,考虑奇数子串#b#,偶数子串b#b,如果中间是#号,那么计算的就是偶数的子串了。置s[0]=‘¥’,随便一个特殊的字符,可以省去计算时的判断的左边界,比对到这个¥特殊符号,肯定没有任何一个是跟他匹配的,最长匹配过程自动就被终止了。而右边界有'\0',自然也没有任何符号会跟他匹配。
2)接着需要记录下每个字符的关于最长子串的一些“信息”,不是长度,而是一个可以计算出长度的数字,其实是(纯长度+1),为什么要这么做?这其实是个边界。即下面提到的mx,在i到mx之间的字符都可以节省一些计算量。
(mx的对称点,id)和(id,mx)是对称的,即是回文的。能使得mx越靠右的字符位置就作为id,所以得及时凭借mx大小来更新id和mx。在(id,mx)中任意一个位置i都会和id左边对称的位置j有着一样的字符,那么以 i为中心的最小回文就跟以 j为中心的最大回文有关了,这也是减少计算量的突破口。假设用P[i]记录以位置i为中心的最长回文串的长度信息的话,有下面两种情况:
(1)以j为中心的最长回文串是(mx的对称点,id)里面的某一部分,则j-P[j]不会超过左边”mx的对称点“ 。那么这在P[id]管辖的范围内,有左右对称的原理,所以P[i]至少为P[j]吧,但是可能会更大,因为左边的是比较过的才求出P[j],这P[i]还没比较过,所以长度可以从P[j]开始比对了。这样就节省了这P[j]次比较了。

(2)P[j]超过了左边”mx的对称点“ 。超过了id的管辖范围了,多出的部分保证不了左右对称的原理了,但是在id管辖范围内的肯定是符合对称原理的,那么至少也可以减少一些计算量呐,减多少呢?就是”id管辖范围内“那个P[j]的长度了,做一些计算就可以得到这个长度是多少,但是肯定是小于P[j]的。

注:那如果i逐渐扫到mx之外了怎么办,i肯定找不到再关于id对称的j了。那就老老实实比较吧,继续用中心扩展。
#include <iostream>
#include <cstring>
#include <vector>
#include <stdio.h>
using namespace std;
const int N=;
int len; //原串长
char str[N]; //接收原来的串
char s[N*]; //做了插入处理的结果串
int P[N*]; //保存关于长度的信息(回文长度的一半再加1)
int cal()
{
int id=, mx=, max1=;
P[]=;
P[]=;
for(int i=; s[i]!='\0'; i++) //考虑以i为中心的回文串
{
P[i] =i>mx? : min( P[*id-i],mx-i);
while(s[i+P[i]]==s[i-P[i]]) //在这比对
P[i]++;
if(i+P[i]>mx) //更新id和mx的位置
{
id=i;
mx=i+P[i];
}
if(P[i]->max1) //更新最大值
max1=P[i]-;
}
return max1;
} int main()
{
freopen("input.txt", "r", stdin);
int t;
cin>>t;
while(t--)
{
scanf("%s",str);
len=strlen(str);
memset(s,,sizeof(s));
memset(P,,sizeof(P)); //插入符号#
s[]='$';
s[]='#';
int i=, j=;
for(; i<len; i++)
{
s[j++]=str[i];
s[j++]='#';
}
cout<<cal()<<endl;
}
return ;
}
AC代码
用String实现了一发:
#include <bits/stdc++.h>
#define INF 0x7f7f7f7f
#define pii pair<int,int>
#define LL unsigned long long
using namespace std;
const int N=; int Manacher(string &str, int len)
{
//插上辅助字符#
string tmp(len*+,'#');
tmp[]='$';
for(int i=; i<str.size(); i++) tmp[i*+]=str[i]; int ans=;
int mx=, id=;
vector<int> P(*len+,); for(int i=; i<tmp.size(); i++)
{
P[i]=( i>=mx? : min( P[*id-i], mx-i ));
while( tmp[i-P[i]]==tmp[i+P[i]] ) P[i]++; //匹配了就继续扩大P[i] if(mx<=i+P[i])//重要:更新位置
{
mx=i+P[i];
id=i;
}
ans=max(ans, P[i]-); //这就是长度了,不信动手画。
}
return ans;
} int main()
{
freopen("input.txt", "r", stdin);
int t;
string str;
cin>>t;
while(t--)
{
cin>>str;
cout<<Manacher(str, str.size())<<endl;;
}
return ;
}
AC代码
hihoCoder hiho一下 第一周 #1032 : 最长回文子串 (Manacher)的更多相关文章
- hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]
传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...
- hihocoder #1032 : 最长回文子串 Manacher算法
题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...
- HiHo 1032 最长回文子串 (Manacher算法求解)
/** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...
- hihocoder 1032 最长回文子串(Manacher)
传送门 #include<queue> #include<cmath> #include<cstdio> #include<cstring> #incl ...
- hiho #1032: 最长回文子串
#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...
- hihocoder #1032 : 最长回文子串【 manacher算法实现 】
#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...
- 最长回文子串——manacher
最长回文子串--Manacher 算法 (原版的博主的代码都是用py写的,这里改成c++) c++ 算法 字符串处理 0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一 ...
- [hihoCoder] #1032 : 最长回文子串
时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这 ...
- hihocode #1032 : 最长回文子串【manacher】模板题
题目链接:https://vjudge.net/problem/HihoCoder-1032 manacher算法详解:https://blog.csdn.net/dyx404514/article/ ...
随机推荐
- hdu1063
#include<iostream> #include<string> using namespace std; struct BigReal //高精度实数 { int le ...
- 20169219《linux内核原理与分析》第七周作业
网易云课堂学习 把write系统调用加入到MenuOS里面 我在试验过程中在MenuOS里加入了time.time-asm.write和write-asm命令.以time和time-asm为例, 步骤 ...
- Linux命令使用
命令行创建设置用户密码 $ sudo useradd -m -r username $ cat "username:password" | sudo chpasswd -m 查询u ...
- eclipse中项目已经启动,可是tomcat一直显示在启动中
一.异常描述 1. 在eclipse中启动tomcat,应用已经启动成功,但是tomcat仍然一直处于starting装填 二.分析原因 1. 更换8080端口为9080,启动tomcat,可以完整启 ...
- 2017-10-1 清北刷题冲刺班a.m
位运算1 (bit) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK拥有一个十进制的数N.它赋予了N一个新的意义:将N每一位都拆开来后再加起来就是N所拥 ...
- eclipse对于虚拟内存的溢出处理
第一个配置:-Xms1024m -Xmx2048m 第二个配置: 第二个配置:-XX:MaxPermSize=1024m 第三个配置就是eclipse安装包中的eclipse.ini文件 -Xms51 ...
- BZOJ4552(二分+线段树)
要点 序列是n个不同的数,则新学到的一种策略就是二分这个位置的答案,然后可以上下调. 神奇地只关注大于还是小于mid并赋值0.1,这样m个操作的排序就能用线段树维护了! #include <cs ...
- django 请求生命周期
详细例子:
- 匿名内部类(new类时覆盖类中方法)
public class Person { private String name ; protected String getName() { return name; } public void ...
- mysql CPU占用高
https://blog.csdn.net/u011239989/article/details/72863333 QPS高,sql简单的场景下, 需要 1. 提高数据库的服务器性能CPU 内存等 2 ...