P4718 【模板】Pollard-Rho算法
题面
题解
太神仙了学不来orz
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define dd long double
#define fp(i,a,b) for(int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int base[]={2,3,7,61,24251};
inline ll mul(R ll x,R ll y,R ll P){R ll k=(dd)x*y/P;k=x*y-k*P;return k<0?k+P:k;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
inline ll g(R ll x,R ll n,R ll c){x=mul(x,x,n)+c;return x>n?x-n:x;}
inline ll Abs(R ll x){return x<0?-x:x;}
ll ksm(R ll x,R ll y,R ll P){
R ll res=1;
for(;y;y>>=1,x=mul(x,x,P))if(y&1)res=mul(res,x,P);
return res;
}
bool miller(ll x){
if(x<2||x==46856248255981ll)return false;
if(x==2||x==3||x==7||x==61||x==24251)return true;
if(!(x&1)||!(x%3)||!(x%61)||!(x%24251))return false;
ll p=x-1;int t=0,j;
while(!(p&1))p>>=1,++t;
fp(i,0,4){
if(base[i]>x)break;
ll res=ksm(base[i],p,x);
if(res==1||res==x-1)continue;
for(j=1;j<=t;++j){
res=mul(res,res,x);
if(res==x-1)break;
}
if(j>t)return false;
}
return true;
}
const int M=(1<<7)-1;
ll rho(ll n){
if(!(n&1))return 2;if(!(n%3))return 3;
ll x=0,y=x,t=1,q=1,c=rand()%(n-1)+1;
for(R int k=2;;k<<=1,y=x,q=1){
fp(i,1,k){
x=g(x,n,c);
q=mul(q,Abs(x-y),n);
if(!(i&M)){
t=gcd(q,n);
if(t>1)break;
}
}
if(t>1||(t=gcd(q,n))>1)break;
}
return t;
}
ll res;
void find(ll x){
if(x==1||x<=res)return;
if(miller(x))return res=x,void();
ll p=x;
while(p==x)p=rho(x);
while(x%p==0)x/=p;
find(p),find(x);
}
int main(){
srand(time(0));
// freopen("testdata.in","r",stdin);
int T;ll n;scanf("%d",&T);
while(T--){
scanf("%lld",&n),res=0,find(n);
res==n?printf("Prime\n"):printf("%d\n",res);
}
return 0;
}
P4718 【模板】Pollard-Rho算法的更多相关文章
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- 大整数分解质因数(Pollard rho算法)
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- 【快速因数分解】Pollard's Rho 算法
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \( ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
随机推荐
- 【转】 Pro Android学习笔记(八四):了解Package(3):包间数据共享
目录(?)[-] 共享User ID的设置 共享资源例子 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn.net/flowing ...
- java代码。从键盘输入次数。可控制的
总结:把一碗水端平,本来水就不多. package com.b; import java.util.Scanner; //想办法用数组.一次性,多个的输出分解质因数 public class fa4 ...
- git学习4 常用命令
1:更新: 更新后,更新只在Workspace中,没有到暂存区.git status可以查看当前状态. git add <file> 可以放到待提交区. git checko ...
- Celery-4.1 用户指南: Configuration and defaults (配置和默认值)
这篇文档描述了可用的配置选项. 如果你使用默认的加载器,你必须创建 celeryconfig.py 模块并且保证它在python路径中. 配置文件示例 以下是配置示例,你可以从这个开始.它包括运行一个 ...
- App.CSharp.Grid的ICells接口
using System;using System.Collections.Generic;using System.Text;using System.Drawing;using System.Wi ...
- 使用ffmpeg压缩视频
命令: ffmpeg -i 1.avi -b 64k 1-64k.avi ffmpeg下载:http://dl.pconline.com.cn/download/53703.html
- java 类中 static 的使用
在类中 static 主要修饰变量,方法及代码块.大致的执行和使用,据个人理解如下: 1.修饰变量: 在修饰变量时,如 ,表示该变量是静态变量,也可称为类变量.当当前变量是静态变量时,该变量被该类的所 ...
- [patl2-020]功夫传人
解题关键:dfs的简单应用,需要注意类型double与int #include<cstdio> #include<cstring> #include<algorithm& ...
- Codeforces #505(div1+div2) C Plasticine zebra
题意:给你一段字符串,可以选择任意多的位置,每个位置会反转两边的字符串,问交错的字符串最长是多长? 思路:找规律,仔细分析样例1.假设位置为 1 2 3 4 5 6 7 8 9,反转之后会发现答案是7 ...
- strstr()查找函数,strchr(),strrchr(),stristr()/strpos(),strrpos()查找字符串位置
在一个较长的字符串这查找匹配的字符串或字符,其中strstr()和strchr()是完全一样的. 例: echo strstr('why always you','you'); 输出: you 如果为 ...