关于KMeans 最外围点移除实验(其中心保持不变)
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
import numpy as np X,labels = make_blobs(100,centers=1) from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=1)
kmeans.fit(X) f, ax = plt.subplots(figsize=(7, 5))
ax.set_title("Blob")
ax.scatter(X[:, 0], X[:, 1], label='Points')
ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1], label='Centroid',color='r')
ax.legend()
f.show() distances = kmeans.transform(X)
# argsort returns an array of indexes which will sort the array in ascending order
# so we reverse it via [::-1] and take the top five with [:5]
#先把数组展开,逆向排序,选前5个,就是最外面的轮廓的索引
sorted_idx = np.argsort(distances.ravel())[::-1][:5] #Now, let's see which plots are the farthest away:
f, ax = plt.subplots(figsize=(7, 5))
ax.set_title("Single Cluster")
ax.scatter(X[:, 0], X[:, 1], label='Points')
ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1],label='Centroid', color='r')
ax.scatter(X[sorted_idx][:, 0], X[sorted_idx][:, 1],label='Extreme Value', edgecolors='g',facecolors='none', s=100)
ax.legend(loc='best')
f.show() new_X = np.delete(X, sorted_idx, axis=0) #Also, the centroid clearly changes with the removal of these points:
new_kmeans = KMeans(n_clusters=1)
new_kmeans.fit(new_X)
#Let's visualize the difference between the old and new centroids:
f, ax = plt.subplots(figsize=(7, 5))
ax.set_title("Extreme Values Removed")
ax.scatter(new_X[:, 0], new_X[:, 1], label='Pruned Points')
ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1], label='Old Centroid',color='r', s=80, alpha=.5)
ax.scatter(new_kmeans.cluster_centers_[:, 0],new_kmeans.cluster_centers_[:, 1], label='New Centroid',color='m', s=80, alpha=.5)
ax.legend(loc='best')
f.show()



关于KMeans 最外围点移除实验(其中心保持不变)的更多相关文章
- 关于fftshift----将零频率的分量移到频谱的中心
fftshift 作用:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到频谱中间,重新排列fft,fft2和fftn的 ...
- 当我们在谈论kmeans(2)
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...
- RHCE实验记录总结-1-RHCSA
不管是运维还是开发系统的了解下Linux或者系统的温习整理一下Linux知识点无疑是较好的,这篇文章是对RHCSA&RHCE实验进行一个汇总,是我为了做实验方便(并分享给朋友)的一篇文章. 前 ...
- 当我们在谈论kmeans(3)
本系列意在长期连载分享,内容上可能也会有所删改: 因此如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/(暂时公式显示有问题) ...
- K-means 算法
本学习笔记参考自吴恩达老师机器学习公开课 聚类算法是一种无监督学习算法.k均值算法是其中应用最为广泛的一种,算法接受一个未标记的数据集,然后将数据聚类成不同的组.K均值是一个迭代算法,假设我们想要将数 ...
- # 20155337 《Android程序设计》实验四实验报告
20155337 <Android程序设计>实验四实验报告 实验一 实验内容 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPU ...
- Tomcat WEB搭建+Nginx负载均衡动静分离+DNS解析的实验
实验拓扑图: 实验环境: 在VMware workstation搭建虚拟环境,利用网络适配器的Nat和桥接模式模拟内网和外网环境. 实验过程中需要安装的工具包包括:vim unzip lrzsz ls ...
- java课堂动手动脑及课后实验总结
动手动脑一:枚举 输出结果: false false true SMALL MEDIUM LARGE 分析和总结用法 枚举类型的使用是借助ENUM这样一个类,这个类是JAVA枚举类型的公共基本 ...
- 聚类算法:K-means
2013-12-13 20:00:58 Yanjun K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离 ...
随机推荐
- Unknown Entity namespace alias 'BaseMemberBundle'.
$em = $this->getDoctrine()->getManager('member');//要记得写上member $repo = $em->getRepository(' ...
- 第1条:确认自己所用的Python版本
很多电脑都预装了多个版本的标准CPython运行时环境,然而,在命令行中输入默认的python命令之后,究竟会执行哪一个版本无法肯定. python通常是python2.7的别名,但也有可能是pyth ...
- model特性
1.scope http://blog.csdn.net/lissdy/article/details/51107883 2.ActiveConcern http://www.tuicool.com/ ...
- 牛客小白月赛1 A 简单题 【数学】
题目链接 https://www.nowcoder.com/acm/contest/85/A 思路 这个 就是 E 但是 运算的时候 要保证 其精度 AC代码 #include <cstdio& ...
- HackerRank - beautiful-binary-string 【字符串】
题意 给出一个 N 位的 01 串 然后 每次 改动 可以将其中的 (0 -> 1) 或者 (1 -> 0) 然后 求 最少几次 改动 使得 这个 01 串 当中 不存在 连续的 010 ...
- jenkins实现自动部署
主机A搭建gitlab.gitlab下载:https://www.gitlab.cc/downloads/ (gitlab中文网) 主机B搭建jenkinsjenkins下载:https://j ...
- 在ubuntu上为android系统编写Linux驱动程序【转】
本文转载自:http://blog.csdn.net/luoshengyang/article/details/6568411 在智能手机时代,每个品牌的手机都有自己的个性特点.正是依靠这种与众不同的 ...
- 算法(Algorithms)第4版 练习 2.2.10
关键代码实现: private static void merge(Comparable[] input, int lo, int mid, int hi) { //copy input[lo,mid ...
- Hive split分割后获取最后一段
----------------------------------------- 如果只看解决方法,直接看最后... ---------------------------------------- ...
- cocos2dx 中 string 转json
string jsonData = warriors.toStyledString().c_str(); Json::Value parseData; Json::Reader reader; rea ...