1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4542  Solved: 2815
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

矩阵乘法的题题解写起来都十分麻烦。。

而且很多东西只能意会。。

f[i , j]表示前 i 个准考证号匹配到不吉利串第 j 个的方案

然后你需要把一个答案矩阵f[i , j]转移到f[i+1 , j]

举个例子,样例,比如当前匹配到了第2位,也就是说前 i 位的结尾是11

对于第 i+1 个字符,如果是 1 的话,接着匹配到不吉利串第 3 位,不是 1 的话就匹配到第 0 位了

也就是说前 i 位匹配到了不吉利串 j 位,加入 i+1 这个字符,有不同情况,有一些会转移到j+1,一些会转移到其他的,写成一些形如f[i+1 , k] += f[i , j]的式子……

f[i+1 , 3] += f[i , 2]

f[i+1 , 0] += f[i , 2]

即枚举i+1可能出现的字符,然后看n个f[i , j]分别转移到哪去,就在转移矩阵的这个转移路径上+1

按照这个思路用kmp写出转移矩阵,事实上暴力应该就行了

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
inline int read()
{
char ch=getchar();
int f=,x=;
while(!(ch>=''&&ch<='')){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+(ch-'');ch=getchar();}
return x*f;
}
int n,m,mod;
int p[];
char ch[];
int a[][],b[][];
void mul(int a[][],int b[][],int ans[][])
{
int tmp[][];
for(int i=;i<m;i++)
for(int j=;j<m;j++)
{
tmp[i][j]=;
for(int k=;k<m;k++)
tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j])%mod;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
ans[i][j]=tmp[i][j];
}
int main()
{
n=read();m=read();mod=read();
scanf("%s",ch+);
int j=;
for(int i=;i<=m;i++)
{
while(j>&&ch[j+]!=ch[i])j=p[j];
if(ch[j+]==ch[i])j++;
p[i]=j;
}
for(int i=;i<m;i++)
for(int j=;j<=;j++)
{
int t=i;
while(t>&&ch[t+]-''!=j)
t=p[t];
if(ch[t+]-''==j)t++;
if(t!=m)b[t][i]=(b[t][i]+)%mod;
}
for(int i=;i<m;i++)
a[i][i]=;
while(n)
{
if(n&)mul(a,b,a);
mul(b,b,b);
n>>=;
}
int sum=;
for(int i=;i<m;i++)
sum=(sum+a[i][])%mod;
printf("%d",sum);
return ;
}

bzoj1009 [HNOI2008] GT考试 矩阵乘法+dp+kmp的更多相关文章

  1. BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp

    这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...

  2. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

  3. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  4. BZOJ 1009 [HNOI2008]GT考试 ——矩阵乘法 KMP

    先用KMP处理所有的转移,或者直接暴力也可以. 然后矩阵快速幂即可. #include <cstdio> #include <cstring> #include <ios ...

  5. [HNOI2008]GT考试 矩阵优化DP

    ---题面--- 题解: 一开始看觉得很难,理解了之后其实还挺容易的. 首先我们考虑朴素DP: 令f[i][j]表示长串到了第i项, 与不吉利数字(模式串)匹配到了第j项的方案. 显然ans = f[ ...

  6. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  7. Codevs 1305 Freda的道路(矩阵乘法 DP优化)

    1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...

  8. bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)

    1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...

  9. [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法

    Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...

随机推荐

  1. 使用ansible安装配置zabbix客户端

    ansible角色简介: 目录名 说明 defaults 默认变量存放目录 handlers 处理程序(当发生改变时需要执行的操作) meta 角色依赖关系处理 tasks 具体执行的任务操作定义 t ...

  2. js | javascript实现浏览器窗口大小被改变时触发事件的方法

    转载 当浏览器的窗口大小被改变时触发的事件window.onresize 为事件指定代码: 代码如下: window.onresize = function(){ } 例如: 浏览器可见区域信息: 代 ...

  3. 使用file_get_contents()和curl()抓取网络资源的效率对比

    使用file_get_contents()和curl()抓取网络资源的效率对比 在将小程序用户头像合成海报的时候,用到了抓取用户头像对应的网络资源,那么抓取方式有很多,比如 file_get_cont ...

  4. php精华之独孤九剑

    首先分享一个地址 https://segmentfault.com/a/1190000013696265(这个是主要的分享,人家作者写的非常棒

  5. composer环境安装

    PHP很多优秀的框架,例如Laravel等等,镜像都在国外,相关的包管理工具Composer也是在国外,所以安装失败的可能性很大,题主所示的就是因为连不上Composer.解决方法如下: 进入官网, ...

  6. C语言结构体篇 结构体

    在描述一个物体的属性的时候,单一的变量类型是无法完全描述完全的.所以有了灵活的结构体变量. 结构体变量从意义上来讲是不同数据类型的组合,从内存上来讲是在一个空间内进行不同的大小划分. 1.1 结构体类 ...

  7. C++高级 STL——模板函数、模板类

    1.模板函数 // 定义 template <class T> Max(T &t1, T &t2) { return ((t1 > t2) ? t1 : t2); } ...

  8. Aizu:0189-Convenient Location

    Convenient Location Time limit 1000 ms Memory limit 131072 kB Problem Description 明年毕业的A为就业而搬家.就职的公司 ...

  9. Hadoop环境搭建 (伪分布式搭建)

    一,Hadoop版本下载 建议下载:Hadoop2.5.0 (虽然是老版本,但是在企业级别中运用非常稳定,新版本虽然添加了些小功能但是版本稳定性有带与考核) 1.下载地址: hadoop.apache ...

  10. Altium Designer之模块复用——设备图表符与Snippets

    Altium Designer中的设备图表符(Device Sheet Symbol)和Snippets是设计中模块复用的利器,下面简单介绍下这个两个功能的使用. 一.设备图表符(Device She ...