Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7462   Accepted: 3959

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

kruskal求最小生成树,每次删掉可用边中最小的,然后再跑最小生成树……不断更新答案

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int INF=1e7;
const int mxn=;
int n,m;
int ans;
struct edge{
int x,y;
int v;
}e[mxn];
int cmp(const edge a,const edge b){
return a.v<b.v;
}
int fa[mxn];
void init(int x){
for(int i=;i<=x;i++)fa[i]=i;return;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void Kruskal(int st){
init(n);
int i,j;
int cnt=;
for(i=st;i<=m && cnt!=n-;i++){
int x=find(e[i].x);int y=find(e[i].y);
if(x!=y){
fa[x]=y;
cnt++;
}
if(cnt==n-){
ans=min(ans,e[i].v-e[st].v);
return;
}
}
return;
}
int main(){
while(scanf("%d%d",&n,&m) && (n||m)){
ans=INF;
int i,j;
for(i=;i<=m;i++)scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+,e+m+,cmp);
for(i=;i<=m;i++)
Kruskal(i);
if(ans==INF)printf("-1\n");
else printf("%d\n",ans);
}
return ;
}

POJ3522 Slim Span的更多相关文章

  1. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  2. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  3. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  4. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  5. [LA 3887] Slim Span

    3887 - Slim SpanTime limit: 3.000 seconds Given an undirected weighted graph G <tex2html_verbatim ...

  6. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  7. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  8. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

  9. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

随机推荐

  1. 【jQuery】input框输入手机号自动填充空格

    <input type="tel" id="tel"> $("#tel").keyup(function(){ _self = ...

  2. 【jQuery】阶段(插入、复制、替换、删除)

    <p>你好!</p> 你最喜欢的水果是? <ul> <li title="苹果">苹果</li> <li titl ...

  3. html常用的实体符号

    HTML中有用的字符实体 字符实体的书写方式如:&entity_name(实体名称法) 或 &#entity_number(实体数字法) 例如用字符实体的形式表示小于号:< 或 ...

  4. manjaro安装teamviewer后无法打开

    点桌面快捷方式一闪而过 命令行运行提示 $ teamviewer /opt/teamviewer/tv_bin/script/tvw_exec:行7: /opt/teamviewer/logfiles ...

  5. 裸机——210SD卡启动

    1.通过阅读iROM_Application_note可以获取关于启动的全部信息 2.记录下代码 制作SD卡启动的代码,即添加校验和的 #include <strings.h> #incl ...

  6. POJ:3259-Wormholes(最短路判断负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 58153 Accepted: 21747 Descripti ...

  7. Azure Cloud Service - PaaS

    使用Azure Cloud Service有一段时间了,前阵子在公司内部做一个Cloud Service培训的时候就在想,能不能用一幅图把Cloud Service所涉及的概念都罗列出来.于是就有了下 ...

  8. PHP代码审计3-SQL注入,CSRF,动态函数执行与匿名函数执行,unserialize 反序列化漏洞,变量覆盖,文件管理,文件上传

    SQL注入 审计语句 [输入参数] SELECT,DELETE,UPDATE,INSERT 防御 转义: 1.开启gpc:判断解析用户提示的数据 2.mysql_real_escape_string( ...

  9. 使用CSS3制作各种形状

    CSS3的一个非常酷的特性是允许我们创建各种规则和不规则形状的图形,从而可以减少图片的使用.以前只能在Photoshop等图像编辑软件中制作的复杂图形现在使用CSS3就可以完成了.通过使用新的CSS属 ...

  10. [转]ANDROID JNI之JAVA域与c域的互操作

    本文讲述AndroidJava域与C域互操作:Java域调用c域的函数:c域访问Java域的属性和方法:c域生成的对象的保存与使用.重点讲解c域如何访问Java域. 虽然AndroidJNI实现中,c ...