题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值

解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交)

或者r-l<=1e-3(右边是精度)

为什么v-xw>=0?(v/x>=x?)

ans要求的是最大值,我们定义:c(x)可以选择使得单位重量的价值>=x,最大值一定满足此函数,此函数关于x单调递减,可以求得一个最大值。求得的x的最大值即是ans。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
#define maxn 1006
#define eps 1e-8
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
int n,k;
double ans;
struct node{
double a,b;
}num[maxn];
bool cmp(const node &x,const node &y){
return x.a-x.b*ans>=y.a-y.b*ans;
}
bool check(double x){
ans=x;
sort(num+,num+n+,cmp);
double sum=;
for(int i=;i<=n-k;i++) sum+=num[i].a-x*num[i].b;
return sum>=-eps;
} double erfen(double l,double r){
while(r-l>eps){//for(int i=1;i<=100;i++)
double mid=(l+r)/;
if(check(mid)) l=mid;
else r=mid;
}
return r;
} int main(){
while(scanf("%d%d",&n,&k)!=EOF&&(n||k)){
for(int i=;i<=n;i++) scanf("%lf",&num[i].a);
for(int i=;i<=n;i++) scanf("%lf",&num[i].b);
double ans=erfen(,1.0*inf);
printf("%.0lf\n",*ans);//必须四舍五入
//printf("%d\n",(int)(100*ans+0.5));
}
return ;
}

2、Dinkelbach算法(原理上比二分更快,因为利用了当前直线所对应的解)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
#define eps 1e-8
using namespace std;
typedef long long ll;
double a[],b[]; struct node{
double num;
int ord;
}d[]; bool cmp(node a,node b){
return a.num>b.num;
} int main(){
int n,k;
while(scanf("%d%d",&n,&k)&&(n||k)){
for(int i=;i<n;i++)scanf("%lf",&a[i]);
for(int i=;i<n;i++)scanf("%lf",&b[i]);
double l=0.0,ans;
while(){
ans=l;
for(int i=;i<n;i++){
d[i].num=a[i]-ans*b[i];
d[i].ord=i;
}
sort(d,d+n,cmp);
double p=0.0,q=0.0;
for(int i=;i<n-k;i++){
p+=a[d[i].ord];
q+=b[d[i].ord];
}
l=p/q;
if(fabs(ans-l)<eps)
break;
}
if(ans>)ans=;
if(ans<)ans=;
printf("%.0f\n",*ans);
}
return ;
}

[poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)的更多相关文章

  1. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  2. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  3. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  4. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  5. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  6. POJ 2976 Dropping tests 01分数规划

    给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...

  7. $POJ$2976 $Dropping\ tests$ 01分数规划+贪心

    正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...

  8. POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))

    题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...

  9. 【POJ2976】Dropping tests - 01分数规划

    Description In a certain course, you take n tests. If you get ai out of bi questions correct on test ...

随机推荐

  1. winform里面的label怎么样实现,字上删除的效果

    label属性里的Font方法理由 Strikeout 选成True 就行了 button1_Click(object sender, EventArgs e) { Graphics g = Grap ...

  2. 从AD域获取用户AD信息

    public static Dictionary<string, string> SearchADInfo(string adName) { string strTemp = " ...

  3. 09-THREE.JS 物体缩放,坐标,旋转,位移,是否可见

    <!DOCTYPE html> <html> <head> <title></title> <script src="htt ...

  4. 条款42:了解typename的双重含义

    typename在很多种情况下与class是完全相同的,例如下面的使用: templame<typename T> ...... template<class T> ..... ...

  5. Debian For ARM mysql-server install information

    /**************************************************************************** * Debian For ARM mysql ...

  6. 每天一个linux命令(15):head命令

    版权声明更新:2017-05-19博主:LuckyAlan联系:liuwenvip163@163.com声明:吃水不忘挖井人,转载请注明出处! 1 文章介绍 本文介绍了Linux下面的mv命令. 2. ...

  7. 学习SQL Server从在Linux上安装开始

    微软已经发布了SQL Server on Linux,目前支持Redhat和Ubuntu两种发行版. 下面我们来安装体验一下. 1. 获得YUM源: YUM的repo文件地址: https://pac ...

  8. thinkphp <volist>标签中 <if> 判断的写法

    thinkphp <volist>标签中 <if> 判断的写法 <volist name="data" id="vo"> & ...

  9. RDD之一:总体介绍

    摘要 本文提出了分布式内存抽象的概念——弹性分布式数据集(RDD,Resilient Distributed Datasets),它具备像MapReduce等数据流模型的容错特性,并且允许开发人员在大 ...

  10. linux参数之max_map_count

    “This file contains the maximum number of memory map areas a process may have. Memory map areas are ...