Union-Find 检测无向图有无环路算法
不相交集合数据结构(Disjoint-set data structure)是一种用于跟踪集合被分割成多个不相交的子集合的数据结构,每个集合通过一个代表来标识,代表即集合中的某个成员。
Union-Find 算法为该数据结构提供了两种非常有用的操作:
- Find:判断子集中是否存在特定的元素。可以用于检测是否两个元素存在于相同的子集中。
- Union:将两个不子集合并成新的子集合。
Union-Find 算法的一个具体的应用就是在无向图(Undirected Graph)中检测是否存在环路(Cycle)。
例如,下面这张无向图 G:
0
| \
| \
1-----2
G 中包含 3 个顶点和 3 条边 {{0, 1}, {1, 2}, {2, 1}}。
初始时,设 int[] parent = new int[VertexCount],默认每个顶点的子集中只有自己,设为 -1。
0 1 2
-1 -1 -1
处理边 {0, 1},Find 顶点 0 和 1 的子集,发现它们在不同的子集中,则 Union 它们,此时 1 代表了子集 {0, 1}。
0 1 2
1 -1 -1
处理边 {1, 2},Find 顶点 1 和 2 的子集,发现它们在不同的子集中,则 Union 它们,此时 2 代表了子集 {0, 1, 2}。
0 1 2
1 2 -1
处理边 {2, 1},Find 顶点 2 和 1 的子集,发现它们在相同的子集中,则图存在环。
Union-Find 算法简单实现如下,其时间复杂度为 O(n)。
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
//g.AddEdge(2, 1, 4);
g.AddEdge(, , );
//g.AddEdge(3, 2, 9);
g.AddEdge(, , );
//g.AddEdge(4, 3, 7);
//g.AddEdge(4, 5, 4); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is there cycle in graph: {0}", g.HasCycle()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} private int Find(int[] parent, int i)
{
if (parent[i] == -)
return i;
return Find(parent, parent[i]);
} private void Union(int[] parent, int x, int y)
{
int xset = Find(parent, x);
int yset = Find(parent, y);
parent[xset] = yset;
} public bool HasCycle()
{
int[] parent = new int[VertexCount];
for (int i = ; i < parent.Length; i++)
{
parent[i] = -;
} // Iterate through all edges of graph, find subset of both
// vertices of every edge, if both subsets are same,
// then there is cycle in graph.
foreach (var edge in this.Edges)
{
int x = Find(parent, edge.Begin);
int y = Find(parent, edge.End); if (x == y)
{
return true;
} Union(parent, x, y);
} return false;
}
}
}
}
本篇文章《Union-Find 检测无向图有无环路算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。
Union-Find 检测无向图有无环路算法的更多相关文章
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- [算法]检测空间三角形相交算法(Devillers & Guigue算法)
#pragma once //GYDevillersTriangle.h /* 快速检测空间三角形相交算法的代码实现(Devillers & Guigue算法) 博客原地址:http://bl ...
- UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法
论文 技术分析<关于网络分层信息泄漏点快速检测仿真> "1.基于动态阈值的泄露点快速检测方法,采样Mallat算法对网络分层信息的离散采样数据进行离散小波变换;利用滑动窗口对该尺 ...
- 特征点检测学习_2(surf算法)
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中 ...
- 模式匹配之surf----特征点检测学习_2(surf算法)
在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就 ...
- 图论 Make Unique:有向图和无向图的一些算法
计算机科学入门资料之一的<算法与数据结构-C语言版>,覆盖了基础算法的几乎所有分支,其中的一个典型分支为图理论. 一个简介:图论基础-图数据结构基础 一个简洁的博客:图论基础,简列一本书 ...
- 当我们谈论算法我们在谈论什么:由疫情核酸检测想到的分治算法(Divide-and-Conquer)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_159 北京的疫情一波未平一波又起,由此看来,战"疫"将是一场旷日持久的战争,绝不能掉以轻心.轻易言胜.病毒随时 ...
- 无向图的最短路径算法JAVA实现
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
- 无向图的最短路径算法JAVA实现(转)
一,问题描述 给出一个无向图,指定无向图中某个顶点作为源点.求出图中所有顶点到源点的最短路径. 无向图的最短路径其实是源点到该顶点的最少边的数目. 本文假设图的信息保存在文件中,通过读取文件来构造图. ...
随机推荐
- PHP socket上传文件图片
最近了解了下下socket方面的东西,想做一个socket上传文件的例子. 在网上搜了搜代码执行后,图片数据传输了一半,图片的下半部分是灰色的.然后就自己仿着搜来的代码和php.net 中socket ...
- git使用入门
添加文件到git仓库 git add readme.txt git commit -m "write a readme file" 查询工作区状态 git status 查询修改内 ...
- rman恢复报ORA-27039
查看资源限制: AIX修改参数文件/etc/security/limits 如下: 重新su到用户下即可生效
- Linux下免安装版sublime text 3显示图标
执行如下命令 sudo vim /usr/share/applications/sublime_text_3.desktop 根据个人存放位置添加如下内容信息: [Desktop Entry] Enc ...
- c语言快速入门2
如果你想快速入门计算机,可以参考我的上一篇帖子,先了解一些必备的软知识,然后再来进行语言的快速入门 计算机入门基础知识 c语言快速入门1 1.1.12 函数的概念 函数的定义:c语言的基本单位,c语言 ...
- OpenGL帧缓存对象(FBO:Frame Buffer Object)(转载)
原文地址http://www.songho.ca/opengl/gl_fbo.html 但有改动. OpenGL Frame BufferObject(FBO) Overview: 在OpenGL渲染 ...
- echarts之tooltip
tooltip:提示框,鼠标悬浮交互时的信息提示. 当trigger为'item'时 tooltip : { trigger: 'item' }, 当trigger为'axis'时 tooltip : ...
- mysql查询练习题-2016.12.16
>>>>>>>>>> 练习时间:2016.12.16 编辑时间:2016-12-20-->22:12:08 题: 涉及:多表查询.ex ...
- 【刷题笔记】火车购票-----java方案
问题描述请实现一个铁路购票系统的简单座位分配算法,来处理一节车厢的座位分配. 假设一节车厢有20排.每一排5个座位.为方便起见,我们用1到100来给所有的座位编号,第一排是1到5号,第二排是6到10号 ...
- sql按字符截取字段
字段A=’F:\photo\Winter Leaves.jpg’ 要求:分段截取每段字符[字段A不能为TEXT类型,否则报错] 解决方法: ---截取字符串A的第一个\左边的字符串 ) 输出结果:F: ...