前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习。无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。
  无监督学习是密切相关的统计数据密度估计的问题。然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术。在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法。
  我们来看两张图片:
                         
  从图中我们可以看到:非监督学习中没有任何的标签或者是有相同的标签或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。别的都不知道,就是一个数据集。针对数据集,无监督学习就能判断出数据有两个不同的聚集簇。 这是一个,那是另一个,二者不同。无监督学习算法可能会把这些数据分成两个不同的簇。所以叫做聚类算法。事实证明,它能被用在很多地方。
  聚类应用的一个例子就是在百度新闻中。如果你以前从来没见过它,你可以到这个 URL 网址http://news.baidu.com/去看看。百度新闻每天都在,收集非常多,非常多的网络的新闻内容。 它再将这些新闻分组,组成有关联的新闻。所以百度新闻做的就是搜索非常多的新闻事件, 自动地把它们聚类到一起。所以,这些新闻事件全是同一主题的,所以显示到一起。
              
从这张网页截图中可以看到,百度新闻收集了大量的新闻,然后把他们聚成不同的类,例如:房产,互联网......在每个大类(大标签)下,又聚成了不同的小类。
  我们再看一个例子:一个 DNA 微观数据的例子。
                
其基本思想是输入一组不同个体,对其中的每个个体,你要分析出它们是否有一个特定的基因。技术上,你要分析多少特定基因已经表达。所以这些颜色,红,绿,灰等等颜色,这些颜色展示了相应的程度,即不同的个体是否有着一个特定的基因。你能做的就是运行一个聚类算法,把个体聚类到不同的 类或不同类型的组(人)……
  所以这个就是无监督学习,因为我们没有提前告知算法一些信息,比如,这是第一类的人,那些是第二类的人,还有第三类,等等。我们只是说,这是有一堆数据。我不知道数据里面有什么,我不知道谁是什么类型,我甚至不知道人们有哪些不同的类型,这些类型又是什么。但你能自动地找到数据中的结构吗?就是说你要自动地聚类那些个体到各个类,我没法提前知道哪些是哪些。因为我们没有给算法正确答案来回应数据集中的数据,这就是无监督学习。

Machine Learning——Unsupervised Learning(机器学习之非监督学习)的更多相关文章

  1. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  2. 131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析

    @(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA ...

  3. Coursera, Machine Learning, Unsupervised Learning, K-means, Dimentionality Reduction

    Clustering  K-means: 基本思想是先随机选择要分类数目的点,然后找出距离这些点最近的training data 着色,距离哪个点近就算哪种类型,再对每种分类算出平均值,把中心点移动到 ...

  4. 【Machine Learning】监督学习、非监督学习及强化学习对比

    Supervised Learning Unsupervised Learning Reinforced Learning Goal: How to apply these methods How t ...

  5. Introduction - Unsupervised Learning

    摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第4课时<无监督学习>的视频原文字幕.为本人在视频学习过程中逐字逐句 ...

  6. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  7. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  8. Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)

    聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...

  9. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

随机推荐

  1. HDU 6336 子矩阵求和

    Problem E. Matrix from Arrays Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 ...

  2. json model 互转

    1.json转model TestModel tm = new TestModel();JavaScriptSerializer js = new JavaScriptSerializer();tm ...

  3. 洛谷——P1093 奖学金

    P1093 奖学金 题目描述 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金.期末,每个学生都有3门课的成绩:语文.数学.英语.先按总分从高到低排序,如果两个同学总分相 ...

  4. sharepoint 2013 和 office web apps server 2013集成

    环境: 三台服务器  系统:window 2008 R2server01: 192.168.10.162(office web app)server02: 192.168.10.163(AD)serv ...

  5. RandomeAccessFile - read write

    RandomeAccessFile use write replace writeBytes public class RandomAccessFileTest { public static voi ...

  6. cf 546C Soldier and Cards

    题目链接:C. Soldier and Cards Two bored soldiers are playing card war. Their card deck consists of exact ...

  7. PowerPoint在线浏览的几个方案

    思路:将ppt转换成pdf.image后实现在线浏览功能 下面的解决方案均不用在服务器端安装office 一.找到一个收费的restful接口,测试可用 http://www.convertapi.c ...

  8. Volley缓存说明——一个请求两次回调

    从上一篇文章Android 异步网络请求框架-Volley了解volley的一些出来过程,当然也包含网络请求和缓存处理的流程,但是在此需要单独做一些说明. 我在使用过程中忽略了一个事情,就是一个网络请 ...

  9. Windows API常用函数

    转自:http://www.cnblogs.com/xiashengwang/p/4026259.html .NET中虽然类库很强,但还是有些时候功能有限,掌握常用的api函数, 会给我们解决问题提供 ...

  10. ISP模块之RAW DATA去噪(一)

    ISP(Image Signal Processor),图像信号处理器,主要用来对前端图像传感器输出信号处理的单元,主要用于手机,监控摄像头等设备上. RAW DATA,可以理解为:RAW图像就是CM ...