前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习。无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。
  无监督学习是密切相关的统计数据密度估计的问题。然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术。在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法。
  我们来看两张图片:
                         
  从图中我们可以看到:非监督学习中没有任何的标签或者是有相同的标签或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。别的都不知道,就是一个数据集。针对数据集,无监督学习就能判断出数据有两个不同的聚集簇。 这是一个,那是另一个,二者不同。无监督学习算法可能会把这些数据分成两个不同的簇。所以叫做聚类算法。事实证明,它能被用在很多地方。
  聚类应用的一个例子就是在百度新闻中。如果你以前从来没见过它,你可以到这个 URL 网址http://news.baidu.com/去看看。百度新闻每天都在,收集非常多,非常多的网络的新闻内容。 它再将这些新闻分组,组成有关联的新闻。所以百度新闻做的就是搜索非常多的新闻事件, 自动地把它们聚类到一起。所以,这些新闻事件全是同一主题的,所以显示到一起。
              
从这张网页截图中可以看到,百度新闻收集了大量的新闻,然后把他们聚成不同的类,例如:房产,互联网......在每个大类(大标签)下,又聚成了不同的小类。
  我们再看一个例子:一个 DNA 微观数据的例子。
                
其基本思想是输入一组不同个体,对其中的每个个体,你要分析出它们是否有一个特定的基因。技术上,你要分析多少特定基因已经表达。所以这些颜色,红,绿,灰等等颜色,这些颜色展示了相应的程度,即不同的个体是否有着一个特定的基因。你能做的就是运行一个聚类算法,把个体聚类到不同的 类或不同类型的组(人)……
  所以这个就是无监督学习,因为我们没有提前告知算法一些信息,比如,这是第一类的人,那些是第二类的人,还有第三类,等等。我们只是说,这是有一堆数据。我不知道数据里面有什么,我不知道谁是什么类型,我甚至不知道人们有哪些不同的类型,这些类型又是什么。但你能自动地找到数据中的结构吗?就是说你要自动地聚类那些个体到各个类,我没法提前知道哪些是哪些。因为我们没有给算法正确答案来回应数据集中的数据,这就是无监督学习。

Machine Learning——Unsupervised Learning(机器学习之非监督学习)的更多相关文章

  1. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  2. 131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析

    @(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA ...

  3. Coursera, Machine Learning, Unsupervised Learning, K-means, Dimentionality Reduction

    Clustering  K-means: 基本思想是先随机选择要分类数目的点,然后找出距离这些点最近的training data 着色,距离哪个点近就算哪种类型,再对每种分类算出平均值,把中心点移动到 ...

  4. 【Machine Learning】监督学习、非监督学习及强化学习对比

    Supervised Learning Unsupervised Learning Reinforced Learning Goal: How to apply these methods How t ...

  5. Introduction - Unsupervised Learning

    摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第4课时<无监督学习>的视频原文字幕.为本人在视频学习过程中逐字逐句 ...

  6. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  7. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  8. Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)

    聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...

  9. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

随机推荐

  1. 程序员面试京东前端,现场JavaScript代码写出魔方特效

    程序员面试京东前端,现场JS代码写出魔方特效,成功搞定20K月薪 今天小编我逛论坛,看到了一位程序员小伙子,因为是有了两年工作经验,然后去京东面试前端岗,一面二面轻松就过了,到了技术面这一块,小伙干脆 ...

  2. RQNOJ PID217 / [NOIP1999]拦截导弹【n^2 / LIS】

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  3. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  4. 每天一个Linux命令(10)cp命令

    cp命令用来将一个或多个源文件或者目录复制到指定的目的文件或目录.它可以将单个源文件复制成一个指定文件名的具体的文件或一个已经存在的目录下.cp命令还支持同时复制多个文件,当一次复制多个文件时,目标文 ...

  5. Xamarin.Android真机测试提示[INSTALL_FAILED_UPDATE_INCOMPATIBLE]

    Xamarin.Android真机测试提示[INSTALL_FAILED_UPDATE_INCOMPATIBLE]   使用真机测试的时候,出现以下错误提示:   Deployment failed ...

  6. linux命令和工具

    环境搭建 lnmp环境搭建 命令 uname -a 查看linux版本 lsof -i:80 查看端口被那个程序占用 lsof -p pid号 查看引用的文件 netstat -apn|grep 80 ...

  7. ThinkPHP中实例化对象M()和D()的区别

    ThinkPHP中实例化对象M()和D()的区别 ThinkPHP中实例化对象M()和D()的区别?ThinkPHP如何实例化对象?在实例化的过程中,经常使用D方法和M方法,这两个方法的区别在于M方法 ...

  8. Windows路由表配置:双网卡路由分流

    一.windows 路由表解释 route print - ====================================================================== ...

  9. DotnetBrowser高级教程-(4)使用MVC框架4-过滤器

    dotnetbrowser内置了过滤器,所谓过滤器,就是实现了Action前后拦截,请看下例: 1.增加目录Filters,在该目录下增加新的过滤器PerformanceFilter,代码如下: pu ...

  10. iOS:UICollectionView纯自定义的布局:堆叠式布局、圆式布局 (一般用来制作相册)

    集合视图的自动布局:UICollectionViewLayout是抽象根类,必须用它的子类才能创建实例,下面是重写的方法,计算item的布局属性 //每一次重新布局前,都会准备布局(苹果官方推荐使用该 ...