UVA 10131题解
第一次写动态规划的代码,整了一天,终于AC。
题目:
Question 1: Is Bigger Smarter?
The Problem
Some people think that the bigger an elephant is, the smarter it is. To disprove this, you want to take the data on a collection of elephants and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the IQ's are decreasing.
The input will consist of data for a bunch of elephants, one elephant per line, terminated by the end-of-file. The data for a particular elephant will consist of a pair of integers: the first representing its size in kilograms and the second representing its IQ in hundredths of IQ points. Both integers are between 1 and 10000. The data will contain information for at most 1000 elephants. Two elephants may have the same weight, the same IQ, or even the same weight and IQ.
Say that the numbers on the i-th data line are W[i] and S[i]. Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing an elephant). If these n integers are a[1], a[2],..., a[n] then it must be the case that
W[a[1]] < W[a[2]] < ... < W[a[n]]
and
S[a[1]] > S[a[2]] > ... > S[a[n]]
In order for the answer to be correct, n should be as large as possible. All inequalities are strict: weights must be strictly increasing, and IQs must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.
Sample Input
6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900
Sample Output
4
4
5
9
7
题解:
两种解法:
步骤:1. 对大象按照重量进行递增排序,相同体重的按照IQ递减排序,得到大象序列A
2. 求A进行最长递减子序列,动态规划法。
设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:
这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai。如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列的长度f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等于以使f(j)最大的那个aj为末元素的递增子序列最末再加上ai;如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。
#include <stdio.h>
#include <stdlib.h>
typedef struct {
int index;
int w;
int iq;
} Niu;
int comp(const void * a, const void * b)
{
int v=((Niu *)a)->w-((Niu *)b)->w;
if( v== 0)
{
return ((Niu *)b)->iq-((Niu *)a)->iq;
}else return v;
} Niu ns[1002];
int f[1002]; //以ns[i]为末尾的序列长度
int mi[1002];
int out[1002];
int main()
{
int c=0,c2,n,m, i,j,t1,t2; while(scanf("%d %d",&t1, &t2)==2){
ns[c].w=t1;
ns[c].iq=t2;
ns[c].index=c+1;
c++;
}
qsort(ns,c,sizeof(Niu),comp); //排序,重量递增排序,如果重量相同,iq递减排序 f[0]=1; //初始化
//dp
for(i=0; i<c; i++) //
{
int max=0;
int midx=-1;
for(j=0; j<i;j++) //找0到i-1见f(i)最长并且
{
if(ns[i].iq<ns[j].iq &&ns[i].w!=ns[j].w && max<f[j]){
max=f[j];
midx=j;
}
}
f[i]=max+1;
mi[i]=midx;
}
int max=-1;
int midx;
for(i=0; i<c; i++){ if(f[i]>max){max=f[i];midx= i;}
}
printf("%d\n",max);
int cxxx=0;
while(1) //输出
{
out[cxxx]= ns[midx].index;
cxxx++;
midx=mi[midx];
if(midx==-1)break;
}
for(i=cxxx; i>0;i--)
{
printf("%d\n", out[i-1]);
} return 0;
}
对于这个问题,还有另一个解法,是将最长递减子序列转变为最长公共子序列问题。
不过很复杂,导致一直WE,我的错误代码如下:
#include <stdio.h>
#include <stdlib.h>
typedef struct {
int index;
int w;
int iq;
} Niu;
int comp(const void * a, const void * b)
{
int v=((Niu *)a)->w-((Niu *)b)->w;
if( v== 0)
{
return ((Niu *)b)->iq-((Niu *)a)->iq;
}else return v;
}
int comp2(const void * a, const void * b)
{
int v=((Niu *)b)->iq-((Niu *)a)->iq;
if(v==0){
return ((Niu *)a)->w-((Niu *)b)->w;
}else
return v;
}
Niu ns[1001];
Niu ns2[1001];
Niu tmp[1002];
int cm[1002][1002];
int tag[1002][1002]; // 1,-1,-2
int result[1002];
int resultSize;
void dp(int n,int m) //c表示大小
{
int i,j,k;
k=0;
for(i=0; i<n; i++)
{
for(j=0;j<m; ++j)
{
if(ns[i].iq==ns2[j].iq)
{
cm[i+1][j+1]=cm[i][j]+ 1;
tag[i+1][j+1] = 1;
}else if(cm[i][j+1]>=cm[i+1][j]){
cm[i+1][j+1]=cm[i][j+1];
tag[i+1][j+1] = -1;
}else{
cm[i+1][j+1]=cm[i+1][j];
tag[i+1][j+1] = -2;
}
}
}
}
void printLCS(int i, int j)
{
if(i==0 || j==0)
return;
if(tag[i][j]==1){
printLCS(i-1,j-1);
result[resultSize]=ns[i-1].index;
resultSize++;
}else if(tag[i][j]==-1)
{
printLCS(i-1,j);
}else {
printLCS(i,j-1);
}
} /*
test case 1:
1000 900
1000 800
1010 900
1010 800 test case 2:
1000 900
1000 900
1010 900
1010 800 test case 3:
100 20
110 20
120 20 test case 4:
100 20
100 20
100 20
100 20
110 19
110 20
test case 5: the result should by
100 20
110 19
110 20 */
int main()
{
int c=0,c2,n,m, i,j,t1,t2; while(scanf("%d %d",&t1, &t2)==2){
ns[c].w=t1;
ns[c].iq=t2;
ns[c].index=c+1;
c++;
} for(i=0; i<c; i++)
{
ns2[i] = ns[i];
}
qsort(ns,c,sizeof(Niu),comp); printf("ns:\n");
for(i=0; i<c; i++)
{
printf("%d %d\n", ns[i].w,ns[i].iq);
} qsort(ns2,c,sizeof(Niu),comp2);
//要把ns2的重复iq的项去掉
j=0;
tmp[0]=ns2[0];
for(i=1;i<c;i++){
if(ns2[i].iq!=tmp[j].iq){
++j;
tmp[j]=ns2[i];
}
} c2=j+1; //去重复大小
for(i=0; i<c2; i++){
ns2[i]=tmp[i];
}
printf("c2:%d\n",c2); dp(c,c2);
printLCS(c,c2); //去重复
//
/* */
int ss=resultSize;
printf("size:%d\n",resultSize);
for(i=0; i<resultSize; i++){
printf("%d\n",result[i]);
}
int pre=0;
for(i=1; i<resultSize; i++){
if(ns[result[i]-1].w!=ns[result[pre]-1].w && ns[result[i]-1].iq!=ns[result[pre]-1].iq ){
pre=i;
}else{
ss--;
result[i]=-1;
}
}
printf("ss:%d\n",ss);
for(i=0; i<resultSize; i++){
if(result[i]!=-1)printf("%d\n", result[i]);
}
return 0;
}
UVA 10131题解的更多相关文章
- Uva 10131 Is Bigger Smarter? (LIS,打印路径)
option=com_onlinejudge&Itemid=8&page=show_problem&problem=1072">链接:UVa 10131 题意: ...
- uva 10131 Is Bigger Smarter?(DAG最长路)
题目连接:10131 - Is Bigger Smarter? 题目大意:给出n只大象的属性, 包括重量w, 智商s, 现在要求找到一个连续的序列, 要求每只大象的重量比前一只的大, 智商却要小, 输 ...
- 位运算基础(Uva 1590,Uva 509题解)
逻辑运算 规则 符号 与 只有1 and 1 = 1,其他均为0 & 或 只有0 or 0 = 0,其他均为1 | 非 也就是取反 ~ 异或 相异为1相同为0 ^ 同或 相同为1相异为0,c中 ...
- 【OI】计算分子量 Molar mass UVa 1586 题解
题目:(由于UVa注册不了,还是用vjudge) https://vjudge.net/problem/UVA-1586 详细说明放在了注释里面.原创. 破题点在于对于一个元素的组合(元素+个数),只 ...
- uva 10131
DP 先对大象体重排序 然后寻找智力的最长升序子列 输出路径.... #include <iostream> #include <cstring> #include &l ...
- uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)
题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...
- UVA 10131 - Is Bigger Smarter? (动态规划)
Is Bigger Smarter? The Problem Some people think that the bigger an elephant is, the smarter it is. ...
- UVA 10131 Is Bigger Smarter?(DP)
Some people think that the bigger an elephant is, the smarter it is. To disprove this, you want to t ...
- UVa 10131: Is Bigger Smarter?
动态规划题.类似UVa103 Stacking Box,都是题目给一种判断嵌套的方法然后求最长序列.提前对数据排序可以节省一些时间开销. 我的解题代码如下: #include <iostream ...
随机推荐
- luogu P1340 兽径管理
题目描述 约翰农场的牛群希望能够在 N 个(1<=N<=200) 草地之间任意移动.草地的编号由 1到 N.草地之间有树林隔开.牛群希望能够选择草地间的路径,使牛群能够从任一 片草地移动到 ...
- Django学习笔记2:处理表单
1.HTTP请求 HTTP协议以"请求-回复"的方式工作. 客户发送请求时,可以在请求中附加数据.服务器通过解析请求,就可以获得客户传来的数据,并根据URL来提供特定的服务. (1 ...
- 数据块dump详解及大小表扫描过程
http://blog.csdn.net/u013820054/article/details/40378233 http://blog.csdn.net/u013820054/article/cat ...
- 监控目前所有连接SQL SERVER的用户信息
原文:监控目前所有连接SQL SERVER的用户信息 if object_id('p_getlinkinfo','P')is not null drop proc p_getlinkinfo go c ...
- Introduction to the TestFlight SDK
https://developer.apple.com/testflight/ When you want to test an app on your device, usually you plu ...
- 泳池水面fresnel 的近似替代
vs float4 ep = TBMultiply(ModelViewMatrix, FinalPosition); DistFromEye.x = TBSaturate( 10.0 + ep.z / ...
- ES6中的async函数
一.概述 async 函数是 Generator 函数的语法糖 使用Generator 函数,依次读取两个文件代码如下 var fs = require('fs'); var readFile = f ...
- 3)Win10-UWA开发 API參考 - 2
孙广东 2015.8.23 二.适用于 UWP 应用的 .NET 摘要 适用于 UWP 应用的 .NET 提供一组托管类型.你能够利用这组托管类型通过 C# 或 Visual Basic 创建 ...
- 命令行设置IE代理
IE代理可以在注册表中设置,所以用DOS修改注册表,可以达到目的.方法一:注册表文件:REGEDIT4[HKEY_CURRENT_USER\Software\Microsoft\Windows\Cur ...
- redis配置不当可导致服务器被控制
服务器配置不当包括三个部分:1.Redis服务使用ROOT账号启动2.Redis服务无密码认证或者使用的是弱口令进行认证3.服务器开放了SSH服务,而且允许使用密钥登录 简单的写下过程 测试环境vic ...