NYOJ-欧几里得
欧几里得
- 描写叙述
-
已知gcd(a,b)表示a,b的最大公约数。
如今给你一个整数n,你的任务是在区间[1,n)里面找到一个最大的x,使得gcd(x,n)等于1。
- 输入
- 输入文件的第一行是一个正整数T,表示有T组測试数据
接下来有T行,每行有一个正整数n (1<=n<=10^1000)。 - 输出
- 每组測试输出要求x。
- 例子输入
-
2
4
7 - 例子输出
-
3
6代码:
#include<stdio.h>
#include<string.h>
char a[1001];
int b[1001];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int i,j;
scanf("%s",a);
int len=strlen(a);
if(strcmp(a,"1")==0)
{
printf("1\n");
continue;
}
for(i=len-1,j=0;i>=0;--i,++j)
b[j]=a[i]-'0';
if(b[0]!=0)
{
b[0]=b[0]-1;
}
else
{
b[0]=10-1;
b[1]--;
for(i=1;i<len;++i)
{
if(b[i]<0)
{
b[i]=b[i]+10;
b[i+1]--;
}
else
break;
}
}
if(b[len-1]==0)
len--;
for(i=len-1;i>=0;--i)
printf("%d",b[i]);
printf("\n"); }
return 0;
}解题思路:
相邻的的两个数最大公约数恒为 1,所以1~n中最大的X使得Gcd(x,n)==1,则x=n-1;【注意特列:当n=1时X=1】
NYOJ-欧几里得的更多相关文章
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
- NOIP2012拓展欧几里得
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- 算法:欧几里得求最大公约数(python版)
#欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a e ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 欧几里得证明$\sqrt{2}$是无理数
选自<费马大定理:一个困惑了世间智者358年的谜>,有少许改动. 原译者:薛密 \(\sqrt{2}\)是无理数,即不能写成一个分数.欧几里得以反证法证明此结论.第一步是假定相反的事实是真 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
随机推荐
- ThinkPHP中实例化对象M()和D()的区别
ThinkPHP中实例化对象M()和D()的区别 ThinkPHP中实例化对象M()和D()的区别?ThinkPHP如何实例化对象?在实例化的过程中,经常使用D方法和M方法,这两个方法的区别在于M方法 ...
- JS 随机数字抽签
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <t ...
- hdu4099 Revenge of Fibonacci
题意:给定fibonacci数列,输入前缀,求出下标.题目中fibonacci数量达到100000,而题目输入的前缀顶多为40位数字,这说明我们只需要精确计算fibinacci数前40位即可.查询时使 ...
- Centos7.x系统优化
1.安装常用软件 yum install tree nmap sysstat lrzsz dos2unix wget net-tools ntpdate -y 2.配置yum源 mv /etc/yu ...
- leetcode题解:Valid Palindrome(判断回文)
题目: Given a string, determine if it is a palindrome, considering only alphanumeric characters and ig ...
- CKEditor+SWFUpload实现功能较为强大的编辑器(二)---SWFUpload配置
在前面配置完CKEditor之后,就可以拥有一个功能挺强大的编辑器了 但是现在还不够,还要能够在发表文字中插入自己电脑上的图片 CKEditor自己好像有这个功能,但是实在是...没法说,很难用(这是 ...
- 【Java编码准则】の #13使用散列函数保存password
明文保存password的程序在非常多方面easy造成password的泄漏.尽管用户输入的password一般时明文形式.可是应用程序必须保证password不是以明文形式存储的. 限制passwo ...
- 简易高重用的jdbcutils工具封装实现类以及简易连接池实现
因为如今发现做个小项目都是导入n多的依赖包,非常烦琐,仅仅想快点开发完一个个的小需求项目,这个时候真心不想用框架,仅仅能自己写个jdbcutils,尽管网上有非常多有apache的,阿里的,可是感觉用 ...
- git学习——记录每次更新到仓库
记录每次更新到仓库 工作目录下面的所有文件都不外乎这两种状态:已跟踪或未跟踪.已跟踪的文件是指本来就被纳入版本控制管理的文件,在上次快照中有它们的记录,工作一段时间后,它们的状态可能是未更新,已修改或 ...
- OSQL.EXE 命令行下脱裤mssql
cd C:\Program Files\Microsoft SQL Server\100\Tools\Binn\ OSQL.EXE -S "localhost" -U " ...