CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)
题意:
给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和
分析:考虑用状态压缩 , 10给位0~9 , 如果之前出现过了某个数字x ,那就拿当前的状态 st | (1<<x) , 表示这个数字出现了 , 那st的二进制有多少的1 , 就有多少不同的数 , 这里好要考虑前导零的情况 。
个数是解决了 , 但是这里是要每个答案的和 , 贼鸡儿坑 , 经过前面的训练可以知道不可能是在(len==0) 这里判断的了 , 因为是记忆化搜索 , 所以你记忆化的只是数量 ,而不是权值和 , 我们可以开多一个位来统计当前位的权值和 , 我们也很容易可以发现 ,并不是单纯的相加起来 , 还要相乘与符合条件 ;
举例子:112和114都是满足条件的权值和 ;(112+114)=(100+10+2+100+10+4)=(2*100+2*10+2+4)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll MOD = 998244353ll;
int cnt[];
ll ppow[];
ll a,b,k;
struct Point{
ll x,y;//x代表符合条件的有几个,y代表对答案的贡献
}dp[][<<][];
Point dfs(ll len,ll state,bool limit,bool non_zero){
if(len==) return Point{,};//一个数字枚举完了 符合条件的++ 不再产生贡献(之前已经计算了)
if(!limit&&dp[len][state][non_zero].y) return dp[len][state][non_zero];
//记忆化
Point ans = Point{,};//初始化ans
int Max = limit?cnt[len]:;//套路
for(int i=;i<=Max;++i){
ll temp = state|((non_zero||i)<<i); //改变状态
if(__builtin_popcountll(temp)>k) continue;//删掉错误的状态
Point t = dfs(len-,temp,limit&&i==Max,non_zero||i);//临时变量
ans.x = (ans.x+t.x)%MOD;//符合条件的个数增加
ans.y = (ans.y+t.y+i*ppow[len-]%MOD*t.x%MOD)%MOD;//当前数位的贡献增加
}
return dp[len][state][non_zero]=ans;
}
ll solve(ll x){
memset(dp,,sizeof dp);
memset(cnt,,sizeof cnt);
int len=;
while(x){
cnt[++len]=x%;
x/=;
}
return dfs(len,,true,).y;
//最高位开始枚举 现在还没有任何数位上有数字 到达了最高位 有前导零zero=true non_zero = false
}
int main(){
ppow[]=;
for(int i=;i<;++i) ppow[i]=ppow[i-]*%MOD;
ios::sync_with_stdio();
cin>>a>>b>>k;
cout<<(solve(b)-solve(a-)+MOD)%MOD<<endl;
return ;
}
CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)的更多相关文章
- 「kuangbin带你飞」专题十五 数位DP
传送门 A.CodeForces - 55D Beautiful numbers 题意 一个正整数是 漂亮数 ,当且仅当它能够被自身的各非零数字整除.我们不必与之争辩,只需计算给定范围中有多少个漂亮数 ...
- POJ3252 Round Numbers 题解 数位DP
题目大意: 求区间 \([x,y]\) 范围内有多少数的二进制表示中的'0'的个数 \(\ge\) '1'的个数. 解题思路: 使用 数位DP 解决这个问题. 我们设状态 f[pos][num0][n ...
- [DP]数位DP总结
数位DP总结 By Wine93 2013.7 1.学习链接 [数位DP] Step by Step http://blog.csdn.net/dslovemz/article/details/ ...
- 2018.06.26 NOIP模拟 号码(数位dp)
题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的 ...
- 数位 dp 总结
数位 dp 总结 特征 问你一个区间 \([L,R]\) 中符合要求的数的个数 一个简单的 trick :把答案拆成前缀和 \(Ans(R)-Ans(L-1)\) 如何求 \(Ans()\) ,就要用 ...
- UPC 2223: A-Number and B-Number(数位DP+二分)
积累点: 1: (l&r)+((l^r)>>) == (l+r)/2 2: 注意判断现在是否有限制.当枚举下一个量时,是(isQuery && j==end),不要 ...
- Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp
F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...
- hdu 4352 XHXJ's LIS (数位dp+状态压缩)
Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...
- CodeForces - 1245F Daniel and Spring Cleaning (数位DP)
While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it ...
- SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]
题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...
随机推荐
- 一个servlet处理多个请求(使用Method的反射机制)
方法一 可以通过在请求的时候加上参数,然后在servlet中获取请求的参数,再去调用对应的方法.达到一个servlet处理多个请求的目的 test.jsp: <%@ page language= ...
- [Python Study Notes]双层柱状图绘制
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- Tornado模板配置
#!/usr/bin/env python # -*- coding:utf-8 -*- #tornado模板配置 import tornado.ioloop import tornado.web c ...
- 玩转Jquery
一 jquery简介 1 jquery是什么 jQuery由美国人John Resig创建,至今已吸引了来自世界各地的众多 javascript高手加入其team. jQuery是继prototype ...
- [poj2653]Pick-up sticks
题目大意:给定一系列线段,以及放在平面上的顺序,给出没有被其他覆盖的线段. 解题关键:线段相交的判断. 满足两个条件即可:快速排斥实验.跨立实验. #include<cstdio> #in ...
- C# 把一个文件夹下所有文件删除
public static void DelectDir(string srcPath){ try { DirectoryInfo dir = new DirectoryInfo(srcPath); ...
- Switch/Case 的穿透性
/*键盘录入1到12 ,对应输出该月份对应的季节 .如果输入的不是1到12,输出提示信息:您输入的数据有误. PS: 春季:3,4,5月份 夏季: 6,7,8月份 秋季: 9,10,11月份 冬季:1 ...
- session跨域共享
www.maxomnis.com的index.php文件内容 <?phpsession_start();setcookie("user", "alex proter ...
- 杭电acm 1037题
本题应该是迄今为止最为简单的一道题,只有一组输入,输出也简单.... /****************************************** 杭电acm 1037题 已AC ***** ...
- 算法Sedgewick第四版-第1章基础-1.3Bags, Queues, and Stacks-001可变在小的
1. package algorithms.stacks13; /******************************************************************* ...