题意:

给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和

分析:考虑用状态压缩 , 10给位0~9 , 如果之前出现过了某个数字x ,那就拿当前的状态 st | (1<<x) , 表示这个数字出现了 , 那st的二进制有多少的1 , 就有多少不同的数 , 这里好要考虑前导零的情况 。

个数是解决了 , 但是这里是要每个答案的和 , 贼鸡儿坑 , 经过前面的训练可以知道不可能是在(len==0) 这里判断的了 , 因为是记忆化搜索 , 所以你记忆化的只是数量 ,而不是权值和 , 我们可以开多一个位来统计当前位的权值和 , 我们也很容易可以发现 ,并不是单纯的相加起来 , 还要相乘与符合条件 ;

举例子:112和114都是满足条件的权值和 ;(112+114)=(100+10+2+100+10+4)=(2*100+2*10+2+4)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll MOD = 998244353ll;
int cnt[];
ll ppow[];
ll a,b,k;
struct Point{
ll x,y;//x代表符合条件的有几个,y代表对答案的贡献
}dp[][<<][];
Point dfs(ll len,ll state,bool limit,bool non_zero){
if(len==) return Point{,};//一个数字枚举完了 符合条件的++ 不再产生贡献(之前已经计算了)
if(!limit&&dp[len][state][non_zero].y) return dp[len][state][non_zero];
//记忆化
Point ans = Point{,};//初始化ans
int Max = limit?cnt[len]:;//套路
for(int i=;i<=Max;++i){
ll temp = state|((non_zero||i)<<i); //改变状态
if(__builtin_popcountll(temp)>k) continue;//删掉错误的状态
Point t = dfs(len-,temp,limit&&i==Max,non_zero||i);//临时变量
ans.x = (ans.x+t.x)%MOD;//符合条件的个数增加
ans.y = (ans.y+t.y+i*ppow[len-]%MOD*t.x%MOD)%MOD;//当前数位的贡献增加
}
return dp[len][state][non_zero]=ans;
}
ll solve(ll x){
memset(dp,,sizeof dp);
memset(cnt,,sizeof cnt);
int len=;
while(x){
cnt[++len]=x%;
x/=;
}
return dfs(len,,true,).y;
//最高位开始枚举 现在还没有任何数位上有数字 到达了最高位 有前导零zero=true non_zero = false
}
int main(){
ppow[]=;
for(int i=;i<;++i) ppow[i]=ppow[i-]*%MOD;
ios::sync_with_stdio();
cin>>a>>b>>k;
cout<<(solve(b)-solve(a-)+MOD)%MOD<<endl;
return ;
}

CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)的更多相关文章

  1. 「kuangbin带你飞」专题十五 数位DP

    传送门 A.CodeForces - 55D Beautiful numbers 题意 一个正整数是 漂亮数 ,当且仅当它能够被自身的各非零数字整除.我们不必与之争辩,只需计算给定范围中有多少个漂亮数 ...

  2. POJ3252 Round Numbers 题解 数位DP

    题目大意: 求区间 \([x,y]\) 范围内有多少数的二进制表示中的'0'的个数 \(\ge\) '1'的个数. 解题思路: 使用 数位DP 解决这个问题. 我们设状态 f[pos][num0][n ...

  3. [DP]数位DP总结

     数位DP总结 By Wine93 2013.7 1.学习链接 [数位DP] Step by Step   http://blog.csdn.net/dslovemz/article/details/ ...

  4. 2018.06.26 NOIP模拟 号码(数位dp)

    题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的 ...

  5. 数位 dp 总结

    数位 dp 总结 特征 问你一个区间 \([L,R]\) 中符合要求的数的个数 一个简单的 trick :把答案拆成前缀和 \(Ans(R)-Ans(L-1)\) 如何求 \(Ans()\) ,就要用 ...

  6. UPC 2223: A-Number and B-Number(数位DP+二分)

    积累点: 1: (l&r)+((l^r)>>) == (l+r)/2 2: 注意判断现在是否有限制.当枚举下一个量时,是(isQuery && j==end),不要 ...

  7. Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp

    F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...

  8. hdu 4352 XHXJ's LIS (数位dp+状态压缩)

    Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...

  9. CodeForces - 1245F Daniel and Spring Cleaning (数位DP)

    While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it ...

  10. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

随机推荐

  1. Java通过JDBC 进行Dao层的封装

    前言 前面有一章节,我专门讲解了Java通过JDBC 进行MySQL数据库操作,这主要讲解了MySQL数据库的连接和简单的操作,但是在真正的Java项目中,我们要不断的和数据库打交道,为了提高数据库操 ...

  2. js-tree坑

    今天遇到一个js坑,一个页面,有两棵树,用同一个套参数初始化的,,,,当选择完另一个棵树之后,再操作另一颗树,不选择树节点,就会有错误出现,,,

  3. python爬虫(2)--Urllib库的高级用法

    1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性. 拆分这些请求,我们只 ...

  4. CORS实现跨域Ajax

    客户端 #!/usr/bin/env python import tornado.ioloop import tornado.web class MainHandler(tornado.web.Req ...

  5. js面试题知识点全解(一作用域)

    问题: 1.说一下对变量提升的理解 2.说明this几种不同的使用场景 3.如何理解作用域 4.实际开发中闭包的应用 知识点: js没有块级作用域只有函数和全局作用域,如下代码: if(true){ ...

  6. C++——const

    参考:https://www.cnblogs.com/Forever-Kenlen-Ja/p/3776991.html ; //修饰变量,a不能该内容(更改为其他的值) int* const p = ...

  7. [转]AJAX工作原理及其优缺点

    1.什么是AJAX?AJAX全称为“Asynchronous JavaScript and XML”(异步JavaScript和XML),是一种创建交互式网页应用的网页开发技术.它使用:使用XHTML ...

  8. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-002如何改进算法

    1. package algorithms.analysis14; import algorithms.util.In; import algorithms.util.StdOut; /******* ...

  9. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤

    For many programs, developing a mathematical model of running timereduces to the following steps:■De ...

  10. python 简单的数据库操作之转账

    介绍:本文是关于数据库的简单操作,实现转账(只是修改数据库中用户的账户金额)的功能 模块介绍:首先是入口主函数 主函数中实现转账方法  以及异常的处理: if __name__ == "__ ...