Palindrome graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1727    Accepted Submission(s): 525

Problem Description
In addition fond of programing, Jack also loves painting. He likes to draw many interesting graphics on the paper.
One day,Jack found a new interesting graph called Palindrome graph. No matter how many times to flip or rotate 90 degrees, the palindrome graph are always unchanged.
Jack took a paper with n*n grid and K kinds of pigments.Some of the grid has been filled with color and can not be modified.Jack want to know:how many ways can he paint a palindrome graph?
 
Input
There are several test cases.
For each test case,there are three integer n m k(0<n<=10000,0<=m<=2000,0<k<=1000000), indicate n*n grid and k kinds of pigments.
Then follow m lines,for each line,there are 2 integer i,j.indicated that grid(i,j) (0<=i,j<n) has been filled with color.
You can suppose that jack have at least one way to paint a palindrome graph.
 
Output
For each case,print a integer in a line,indicate the number of ways jack can paint. The result can be very large, so print the result modulo 100 000 007.
 
Sample Input
3 0 2
4 2 3
1 1
3 1
 
Sample Output
8
3
 
Author
FZU
 
Source
 
 
题目大意:给出了回文图的定义,即前后翻转或者旋转90度不改变图的样子。给你n,m,k分别表示有n*n的格子图,有m个格子已经涂上颜色,现在有k种颜色用来涂满剩余的格子(其实并没有在题中读到这个意思,是看别人博客这么解释的),问有多少涂法。(其实题意感觉不是很清楚)。
 
解题思路:分析n*n的方格,我们只要分析出1/8的方格情况就行了。我们选择分析左上角上方的三角形,我们发现有1+2+3...+(n+1)/2个方格可能需要涂色。但是有m个方格已经涂了颜色,那么我们把所有可以通过转动能转到我们分析的三角形中的已涂色的格子的坐标化成在三角形中的坐标,可以先全化成左上角的大方格中,再化成上方的三角形中。对于涂色方案:k^x。k为给的涂料种数,x为左上角上方的三角形中可以任意涂色的格子个数(只要有部分格子在三角形中,该格子就算是在三角形中了)。
 
#include<bits/stdc++.h>
using namespace std;
const int mod=1e8+7;
typedef __int64 INT;
map<pair<int,int>,int>mp;
int Pow(INT x,int nn){
INT ret=1;
while(nn){
if(nn&1)
ret=ret*x%mod;
x=x*x%mod;
nn>>=1;
}
return ret;
}
int main(){
int n,m,k,x,y;
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
mp.clear();
int pted=0,cnt=0;
while(m--){
scanf("%d%d",&x,&y);
if(x>n-1-x){ //坐标转化成三角形中的对称坐标
x=n-1-x;
}
if(y>n-1-y){
y=n-1-y;
}
if(x>y){
swap(x,y);
}
if(mp[make_pair(x,y)]==0){
mp[make_pair(x,y)]=1;
pted++;//已经涂过色的
}
}
int cc=(n+1)/2;
cnt=(cc+1)*cc/2; //三角形中的总格子数
INT ans=Pow((INT)k,(cnt-pted));
printf("%I64d\n",ans);
}
return 0;
}

  

HDU 4365——Palindrome graph——————【规律+快速幂】的更多相关文章

  1. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  2. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  3. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  4. hdu 5187 zhx's contest [ 找规律 + 快速幂 + 快速乘法 || Java ]

    传送门 zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  6. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  7. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  8. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)

    题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...

随机推荐

  1. C++: 其他类型转string

    1.to_string函数 C++11新增的函数,c++11标准增加了全局函数std::to_string,以及std::stoi/stol/stoll等等函数(string转int,long,以及l ...

  2. Input is not proper UTF-8, indicate encoding !错误处理

    xml 中如果包含部分 ascii 控制字符(小数字)则 chrome会报告如下类型错我: This page contains the following errors: error on line ...

  3. Zoey.Dapper--Dapper扩展之把SQL语句放到文件中

    介绍 不知道大家在用Dapper的时候SQL语句是写到哪的,目前看网上的例子都是写到类里面的. 此项目的目的是把SQL语句放到文件(xml)中 目前只是初步版本,只是说明了意图,后面会持续完善和优化 ...

  4. 3分钟实现iOS语言本地化/国际化(图文详解)

    前言 语言本地化,又叫做语言国际化. 是指根据用户操作系统的语言设置,自动将应用程序的语言设置为和用户操作系统语言一致的语言. 往往一些应用程序需要提供给多个国家的人群使用,或者一个国家有多种语言,这 ...

  5. js中 关于DOM的事件操作

    一.JavaScript的组成 JavaScript基础分为三个部分: ECMAScript:JavaScript的语法标准.包括变量.表达式.运算符.函数.if语句.for语句等. DOM:文档对象 ...

  6. mybatis 批量update两种方法对比

    <!-- 这次用resultmap接收输出结果 --> <select id="findByName" parameterType="string&qu ...

  7. 查看详细linux系统信息的命令和方法

    查看内存大小: cat /proc/meminfo |grep MemTotaluname -a # 查看内核/操作系统/CPU信息的linux系统信息命令head -n 1 /etc/issue # ...

  8. Centos7安装MySQL8.0

    请到这个地址看:https://www.cnblogs.com/kevingrace/p/10482469.html Centos7安装MySQL8.0 - 操作手册 一.yum安装方式: 卸载之前版 ...

  9. vue.js路由学习笔记

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  10. 09. ajax跨域问题,同源策略

    有三个标签允许跨域加载资源 <img src=“”/> <link href=“”/> <script src=“”> 可以做防盗链图片功能   前端使用jsonp ...