Matching In Multiplication

题解:

首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为1的点。

那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。

时间复杂度O(n)。

比赛的时候已经想出做法了,然而实现的太慢了,时间不够了,最后看了题解才想到,哦,原来隔着取就好了,我还想着去求匹配,标记取边呢

讲道理,这个时间卡得真紧,我写的挫,用vector居然过不去,改成用数组建边,队列手写才过去

#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 998244353;
const int N = 1e6 + 10;
int read(){
int x = 0;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x;
}
struct Edge{
int v,w,nxt;
Edge(){};
}ee[N * 2];
int head[N],EN;
int n;
int d[N];
int vis[N];
int cnt;
int e[N];
int Q[N];
void add(int u,int v,int w){
ee[EN].v = v,ee[EN].w = w,ee[EN].nxt = head[u + n];
head[u + n] = EN++;
ee[EN].v = u + n,ee[EN].w = w,ee[EN].nxt = head[v];
head[v] = EN++;
}
void init(){
EN = 0;
for(int i = 1;i <= 2 * n;i++) {
vis[i] = d[i] = 0;
head[i] = -1;
}
}
void dfs(int u,int f){
vis[u] = 1;
bool flag = true;
int p;
for(int i = head[u];~i;i = ee[i].nxt){
if(ee[i].v != f) p = ee[i].w;
if(!vis[ee[i].v]){
e[cnt++] = ee[i].w;
flag = false;
dfs(ee[i].v,u);
}
}
if(flag){
e[cnt++] = p;
}
} int main(){ int T;
T = read();
while(T--){
n = read();
int u,v,w,v1,w1,v2,w2;
init();
for(int i = 1;i <= n;i++){
v1 = read(),w1 = read(),v2 = read(),w2 = read();
d[v1]++,d[v2]++;
add(i,v1,w1);
add(i,v2,w2);
}
int h = 0,t = 0;
LL ans = 1;
for(int i = 1;i <= n;i++){
if(d[i] == 1) Q[t++] = i;
}
while(h < t){
u = Q[h++];
for(int i = head[u];~i;i = ee[i].nxt){
if(vis[ee[i].v]) continue;
ans = ans * ee[i].w % mod, v = ee[i].v;
break;
}
vis[u] = vis[v] = 1;
for(int i = head[v];~i;i = ee[i].nxt){
if(!vis[ee[i].v] && --d[ee[i].v] == 1) Q[t++] = ee[i].v;
}
}
for(int i = 1;i <= n;i++){
if(!vis[i] && d[i] == 2){
cnt = 0;
dfs(i,-1);
LL res1 = 1,res2 = 1;
for(int j = 0;j < cnt;j+=2){
res1 = res1 * e[j] % mod;
res2 = res2 * e[j+1] % mod;
}
ans = ans * (res1 + res2) % mod ;
}
}
printf("%lld\n",ans);
}
return 0;
}

2017 多校4 Matching In Multiplication(二分图)的更多相关文章

  1. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  2. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  3. HDU 6073 Matching In Multiplication(拓扑排序)

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  4. hdu6073[dfs+删边] 2017多校4

    题目中对二分图的定义十分特殊, 指的是 U,V两部分中,U的顶点度数必定为2,V中顶点无限制. 题目要求的是 对于所有匹配,该匹配的权值=该匹配中选中的边的边权的乘积,求所有匹配权值之和. 对于V中的 ...

  5. hdu6073 Matching In Multiplication 分析+拓扑序

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  6. 2017 多校5 hdu 6093 Rikka with Number

    2017 多校5 Rikka with Number(数学 + 数位dp) 题意: 统计\([L,R]\)内 有多少数字 满足在某个\(d(d>=2)\)进制下是\(d\)的全排列的 \(1 & ...

  7. 2017 多校5 Rikka with String

    2017 多校5 Rikka with String(ac自动机+dp) 题意: Yuta has \(n\) \(01\) strings \(s_i\), and he wants to know ...

  8. 2017 多校4 Wavel Sequence

    2017 多校4 Wavel Sequence 题意: Formally, he defines a sequence \(a_1,a_2,...,a_n\) as ''wavel'' if and ...

  9. 2017 多校4 Security Check

    2017 多校4 Security Check 题意: 有\(A_i\)和\(B_i\)两个长度为\(n\)的队列过安检,当\(|A_i-B_j|>K\)的时候, \(A_i和B_j\)是可以同 ...

随机推荐

  1. 爬虫学习(十八)——selenium解决javascript渲染

    selenium 是一个用于Web应用程序测试的工具. Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Fir ...

  2. MySQL主从复制读写分离如何提高从库性能-实战

    在做主从读写分离时候,需要注意主从的一些不同参数设置,来提高从库的性能,提高应用读取数据的速度,这样做很有必要的. 做读写分离复制主从参数不同设置如下(需要根据自己应用实际情况来设置): parmet ...

  3. Tinyhttpd 知识点

    1. fork 子进程 #include <stdio.h> #include <unistd.h> int main(void) { pid_t pid; ; pid = f ...

  4. js字节转换、字节格式化函数

    有时候在上传附件后需要显示大小,可以选择在后台处理,也可以在前台用js处理. 比如我们想1024MB转换成1GB,那就需要进行转换,这里只是介绍用js进行转换. function bytesToSiz ...

  5. PHP自动生成分页链接

    page.class.php <?php class Page { // 分页栏每页显示的页数 public $rollPage = 5; // 页数跳转时要带的参数 public $param ...

  6. git分布式版本控制系统常用的操作

    Git是一个版本控制系统,用来追踪计算机文件的变化的工具,也是一个供多人使用的协同工具.它是一个分布式的版本控制系统,本文将简单介绍如何使用.简单来说,就是你要和你的伙伴一起完成一项任务,但是你们要互 ...

  7. 状压DP详解(位运算)

    前言: 状压DP是一种非常暴力的做法(有一些可以排除某些状态的除外),例如dp[S][v]中,S可以代表已经访问过的顶点的集合,v可以代表当前所在的顶点为v.S代表的就是一种状态(二进制表示),比如 ...

  8. 猜数字问题 python

    猜数字问题,要求如下: ① 随机生成一个整数 ② 猜一个数字并输入 ③ 判断是大是小,直到猜正确 ④ 判断时间提示:需要用time模块.random模块该题目不需要创建函数 import random ...

  9. 011---Djang的cookie和session

    -------------------------------------------------------------cookie与session------------------------- ...

  10. POJ:1258-Agri-Net

    Agri-Net Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65322 Accepted: 27029 Descriptio ...