P2294 [HNOI2005]狡猾的商人
题目描述

输入输出格式
输入格式:
从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要你判断。每组数据的第一行为两个正整数n和m,其中n < 100,m < 1000,分别表示对应的账本记录了多少个月的收入情况以及偷看了多少次账本。接下来的m行表示刁姹偷看m次账本后记住的m条信息,每条信息占一行,有三个整数s,t和v,表示从第s个月到第t个月(包含第t个月)的总收入为v,这里假设s总是小于等于t。
输出格式:
输出文件output.txt中包含w行,每行是true或false,其中第i行为true当且仅当第i组数据,即第i个账本不是假的;第i行为false当且仅当第i组数据,即第i个账本是假的。
输入输出样例
2
3 3
1 2 10
1 3 -5
3 3 -15
5 3
1 5 100
3 5 50
1 2 51
true
false
Solution:
本题是思维比较巧妙的差分约束。。。
思路类似于植树那道题,$u\rightarrow v=c$可以理解为$sum[v]-sum[u-1]=c$(前缀和)。
那么对于每个条件我们可以先得出约束条件:$w[u-1,v]=c$表示$sum[v]$比$sum[u-1]$大$c$。
我们直接在这样的图上跑最长路后能求出每个点的$dis$值,但是如何去判断是否合法呢?
先看这张图(手绘勿喷):

此图表示的是$sum[1,3]=1,\;sum[1,2]=1,\;sum[2,3]=1$的情况,显然是不合法的情况,但是我们求出最长路后的$dis$值分别为$dis[1]=0,\;dis[2]=1\;dis[3]=2$,貌似对判断合法没什么用。
不难发现,用少了约束条件,给定的$sum[u\rightarrow v]=c$不仅需要满足$sum[v]-sum[u-1]=c$,还应该满足$sum[u-1]-sum[v]=-c$。
那么我们加入这一约束后,图就变成了这样:

此时,我们由第一张图求得的$dis[1]=0,\;dis[2]=1,\;dis[3]=2$在此图中还可以继续更新,$dis[1]=0$会由$dis[3]$更新变为$dis[1]=1$,然后引发一系列无限制的更新。究其原因,就是因为不满足$sum[u-1]-sum[v]=-c$这一约束条件。
所以我们将两个约束条件都建成边。
再考虑另一个问题,那就是源点不确定,所以我们每次以没有被遍历过的点为源点跑$spfa$求最长路(即使约束条件中没有出现过该点也对答案无影响,因为根本不会由它进行广搜遍历),那么当某个点被重复遍历超过$n$次,则出现了环,说明不可行,否则就是合法的。(事实证明数据比较水,因为我第一遍没有考虑源点不为$0$的情况,但是却$A$了~~)
代码:
#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
using namespace std;
const int N=,inf=;
int T,to[N],tot[N],net[N],h[N],w[N],dis[N],cnt,n,m;
bool vis[N];
queue<int>q; il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} il void add(int u,int v,int c){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,w[cnt]=c;} il bool spfa(int s){
For(i,,n)dis[i]=-inf;
q.push(s);dis[s]=;vis[s]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;tot[u]++;
if(tot[u]==n)return ;
for(int i=h[u];i;i=net[i])
if(dis[to[i]]<dis[u]+w[i]){
dis[to[i]]=dis[u]+w[i];
if(!vis[to[i]])q.push(to[i]),vis[to[i]]=;
}
}
return ;
} int main(){
T=gi();
while(T--){
n=gi(),m=gi();
cnt=;
memset(vis,,sizeof(vis));
memset(h,,sizeof(h));
memset(tot,,sizeof(tot));
int u,v,c,f;
while(m--){
u=gi(),v=gi(),c=gi();
add(u-,v,c);add(v,u-,-c);
}
f=;
For(i,,n-){
if(!tot[i]){
if(!spfa(i)){f=;break;}
}
}
if(!f)printf("true\n");
else printf("false\n");
}
return ;
}
P2294 [HNOI2005]狡猾的商人的更多相关文章
- [luogu P2294] [HNOI2005]狡猾的商人
[luogu P2294] [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据, ...
- 洛谷P2294 [HNOI2005]狡猾的商人
P2294 [HNOI2005]狡猾的商人 题目描述 输入输出格式 输入格式: 从文件input.txt中读入数据,文件第一行为一个正整数w,其中w < 100,表示有w组数据,即w个账本,需要 ...
- P2294 [HNOI2005]狡猾的商人(差分约束)
P2294 [HNOI2005]狡猾的商人 对于每个$(x,y,w)$,连边$(x-1,y,w),(y,x-1,-w)$,表示前$y$个月的收益比前$x-1$个月的收益大$w$ 这样题目就转化为询问图 ...
- LUOGU P2294 [HNOI2005]狡猾的商人(差分约束)
[传送门] (https://www.luogu.org/problemnew/show/P2294) 解题思路 差分约束.先总结一下差分约束,差分约束就是解决一堆不等式混在一起,左边是差的形式,右边 ...
- 洛谷 [p2294] [HNOI2005] 狡猾的商人
差分约束做法 又是一道转换成前缀和的差分约束题,已知从s月到t月的收入w,设数组pre[i]代表从开始到第i个月的总收入 构造差分不等式 $ pre[s-1]-pre[t]==w $ 为了满足松弛操作 ...
- 题解——洛谷P2294 [HNOI2005]狡猾的商人(差分约束)
裸的差分约束 dfs判断负环,如果有负环就false,否则就是true 注意有多组数据,数组要清空 #include <cstdio> #include <algorithm> ...
- Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)
题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...
- [HNOI2005]狡猾的商人 ,神奇做法——贪心
洛谷P2294 [HNOI2005]狡猾的商人 ,神奇做法--贪心 看到大牛都是写的差分约束或带权并查集,本蒟蒻都不太会(还是用差分约束过了的QAQ),但是想出一种贪心的策略,运用神奇的优先队列实现. ...
- [BZOJ1202][HNOI2005]狡猾的商人
[BZOJ1202][HNOI2005]狡猾的商人 试题描述 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i= ...
随机推荐
- 图解HTTP-1.web和网络基础
目录 1. 3 项 WWW 构建技术 2. TCP/IP 是互联网相关的各类协议族的总称 协议(protocol) TCP/IP分层管理 TCP/IP通信传输流 封装(encapsulate) 3. ...
- svn+apache安装配置
1.安装httpd,mod_dav_svn,subversion yum install -y httpd mod_dav_svn subversion 2.创建仓库 mkdir /var/www/s ...
- [Wolfgang Mauerer] 深入linux 内核架构 第一章 概述
作为Linux开发爱好者,从事linux 开发有两年多时间.做过bsp移植,熟悉u-boot代码执行流程:看过几遍<linux 设备驱动程序开发>,分析过kernel启动流程,写过驱动,分 ...
- webmin纯web界面管理linux系统
关键字: 摘要:从Windows环境的管理转到Linux环境的管理时所面临的挑战之一是,您需要去学习利用新的工具.作为一个管理员,您希望理解操作系统的细节以发挥它的最大功效.但是,当您还处在学习阶段时 ...
- tcl之其他命令-eval/source
- fastadmin 后台管理框架使用技巧(持续更新中)
fastadmin 后台管理框架使用技巧(持续更新中) FastAdmin是一款基于ThinkPHP5+Bootstrap的极速后台开发框架,具体介绍,请查看文档,文档地址为:https://doc. ...
- Git版本控制使用方法入门教程
1. 概述 对于软件版本管理工具,酷讯决定摒弃CVS而转向Git了. 为什么要选择Git? 你真正学会使用Git时, 你就会觉得这个问题的回答是非常自然的.然而当真正需要用文字来回答时,却觉得文字好像 ...
- 汉罗塔问题——Python
汉罗塔问题就是一个循环的过程:* (有两种情况) 如果被移动盘只有一个盘子,可以直接移动到目的盘 但是被移动盘有多个盘子,就先需要将上面的n-1个盘子通过目的盘移动到辅助盘,然后将被移动盘最下面一个盘 ...
- B1005 继续(3n+1)猜想 (25分)
B1005 继续(3n+1)猜想 (25分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程 ...
- CERC2017 F: Faulty Factorial 简单数论题
#include <iostream> using namespace std; #define ll long long ; ll n,p,r; ll poww(ll a,ll b){ ...