题目

  “余”人国的国王想重新编制他的国家。他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成

员来管理。他的国家有n个城市,编号为1..n。一些城市之间有道路相连,任意两个不同的城市之间有且仅有一条

直接或间接的道路。为了防止管理太过分散,每个省至少要有B个城市,为了能有效的管理,每个省最多只有3B个

城市。每个省必须有一个省会,这个省会可以位于省内,也可以在该省外。但是该省的任意一个城市到达省会所经

过的道路上的城市(除了最后一个城市,即该省省会)都必须属于该省。一个城市可以作为多个省的省会。聪明的

你快帮帮这个国王吧!

输入格式

  第一行包含两个数N,B(1<=N<=1000, 1 <= B <= N)。接下来N-1行,每行描述一条边,包含两个数,即这

条边连接的两个城市的编号。

输出格式

  如果无法满足国王的要求,输出0。否则输出数K,表示你给出的划分方案中省的个数,编号为1..K。第二行输

出N个数,第I个数表示编号为I的城市属于的省的编号,第三行输出K个数,表示这K个省的省会的城市编号,如果

有多种方案,你可以输出任意一种。

输入样例

8 2

1 2

2 3

1 8

8 7

8 6

4 6

6 5

输出样例

3

2 1 1 3 3 3 3 2

2 1 8

题解

一道长得很像难题的水题。。。【n <= 1000,无解,3B,都是什么奇奇怪怪的东西】

我们只要深搜维护一个栈,当子树剩余没有分配的城市大小>=B时,就将它们划分,首都设为当前节点,如果不足,留在栈内与下一个子树合并。若没有子树了,加上当前节点留着往上回溯和上边的节点合并。到最后还剩不到B个,就和上一次划分的城市合并

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 1005,maxm = 2005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,B,h[maxn],ne = 0;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int st[maxn],fa[maxn],top = 0,cnt = 0,id[maxn],cap[maxn];
void dfs(int u){
int to,last = top;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u;
dfs(to);
if (top - last >= B){
cap[++cnt] = u;
while (top > last) id[st[top--]] = cnt;
}
}
st[++top] = u;
}
int main(){
memset(h,-1,sizeof(h));
N = RD(); B = RD();
REP(i,N - 1) build(RD(),RD());
dfs(1);
while (top) id[st[top--]] = cnt;
printf("%d\n%d",cnt,id[1]);
for (int i = 2; i <= N; i++) printf(" %d",id[i]); printf("\n%d",cap[1]);
for (int i = 2; i <= cnt; i++) printf(" %d",cap[i]);
return 0;;
}

BZOJ1086 [SCOI2005]王室联邦 【dfs + 贪心】的更多相关文章

  1. 2018.09.16 bzoj1086: [SCOI2005]王室联邦(贪心)

    传送门 就是给树分块. 对于一个节点. 如果它的几棵子树加起来超过了下限,就把它们分成一块. 这样每次可能会剩下几个节点. 把它们都加入栈中最顶上那一块就行了. 代码: #include<bit ...

  2. bzoj1086 [SCOI2005]王室联邦 树分块

    [bzoj1086][SCOI2005]王室联邦 2014年11月14日2,6590 Description “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的 ...

  3. BZOJ1086: [SCOI2005]王室联邦(贪心,分块?)

    Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2610  Solved: 1584[Submit][Status] ...

  4. BZOJ1086 [SCOI2005]王室联邦

    Description “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成 员来管理.他的国家有n个城市,编号为1..n.一些城市之间有道路相连,任意两个 ...

  5. BZOJ-1086 [SCOI2005]王室联邦 (树分块)

    递归处理子树,把当前结点当作栈底,然后递归,回溯回来之后如果栈中结点数量到达某一个标准时,弹出栈中所有的元素分到一个块中,最后递归结束了如果栈中还有元素,那么剩下的这些元素放在新的块中 题目:BZOJ ...

  6. BZOJ1086 [SCOI2005]王室联邦(树分块)

    把树的结点分块,块内结点连通且个数[b,3b]. 一遍DFS,维护一个栈,设置一个虚拟栈底以保证连通,递归返回时判断栈内元素个数是否大于等于b,是则划分为一个块,最后剩下的与最后一个块划分在一起. h ...

  7. BZOJ1086 SCOI2005王室联邦

    想学树上莫队结果做了个树分块. 看完题后想到了菊花图的形状认为无解,结果仔细一瞧省会可以在外省尴尬 对于每一颗子树进行深搜,一旦遇到加在一起大小达到B则将它们并为一省,因为他子树搜完以后没有分出块的大 ...

  8. BZOJ 1086 [SCOI2005]王室联邦 ——DFS

    手把手教你树分块系列. 只需要记录一个栈,如果等于B的情况就弹栈,令省会为当前节点. 然后把待分块的序列不断上传即可. 考虑到有可能弹出不是自身节点的子树节点,所以记录一下当前的栈底. DFS即可 # ...

  9. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

随机推荐

  1. FAT32中文版分析+补充(1)

    概述 起先所有的FAT文件系统都是为IBM PC机器而设计的,这说明了一个重要的问题:FAT文件系统在磁盘上的数据是用“小端”(Little Endian)结构存储的.我们使用4个8-bit的字节—— ...

  2. Maven_项目管理工具

    Maven 一.Maven是apache下的一个开源项目,是纯java开发,并且只是用来管理java项目的 二.Maven的好处: 0.节省空间:对jar包做了统一管理 依赖管理,项目里无需放jar包 ...

  3. RabbitMQ安装---rpm安装

    首先介绍一下个人的安装环境是Linux-centos7: 一.安装和配置rabbitmq的准备工作: 下载erlang:    wget http://www.rabbitmq.com/release ...

  4. 完善压缩处理类(支持主流的图像类型(jpg、png、gif)

    <?php /* * 图像压缩 */ class Thumb { //成员属性 private $file; //原图文件 private $thumb_path; //压缩文本件保存的地址 / ...

  5. python之微信好友统计信息

    需要安装库:wxpy 代码如下: from wxpy import Bot,Tuling,embed,ensure_one bot = Bot(cache_path=True) #获取好友信息 bot ...

  6. 华为模拟器ensp安装教程

    华为模拟器说实话有时候真的是很烦人,总是莫名其妙的出问题,而且网上教程一般也解决不了 因此我认为学会ensp的重装真的很重要,因此只要我们删除干净了,安装最多花不了20分钟的时间 接下来我就来说说怎么 ...

  7. Mysql 索引 简介

    Mysql索引 索引的分类 索引的创建 索引的注意事项 什么是索引 索引是存储引擎用于快速查找记录的一种数据结构. 索引由数据库中一列或者多列组成,作用是提高表的查询速度. 索引的优点,提高检索数据的 ...

  8. Java 的单元测试

    有点需要注意,当 JUnit 主线程退出,子线程也会跟着退出,需要使用子线程的 join() 方法使主线程等待 Maven 依赖 <dependency> <groupId>j ...

  9. Java中的初始化详细解析

    今天所要详细讲解的是Java中的初始化,也就是new对象的过程中,其程序的行走流程. 先说没有静态成员变量和静态代码块的情况. public class NormalInit { public sta ...

  10. Active Directory 域服务 (AD DS) 虚拟化

    TechNet 库 Windows Server Windows Server 2012 R2 和 Windows Server 2012 服务器角色和技术 Active Directory Acti ...