[bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛
LCMSum bzoj-2226 Spoj-5971
题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$
注释:$1\le n\le 10^6$,$1\le cases \le 3\cdot 10^5$。
想法:$\sum\limits_{i=1}^nlcm(i,n)$
$=\sum\limits_{i=1}^n\frac{in}{gcd(i,n)}$
$=n\cdot \sum\limits_{i=1}^n \frac{i}{gcd(i,n)}$
$=n\cdot \sum\limits_{d=1}^n\sum\limits_{i=1}^{n}i/d[gcd(i,n)=d]$
$=n\cdot \sum\limits_{d|n}\sum\limits_{i=1}^{\frac{n}{d}}i[gcd(i,\frac{n}{d})=1]$
$=n\cdot \sum\limits_{d|n}\sum\limits_{i=1}^{d}i[gcd(i,d)=1]$
$=n\cdot \sum\limits_{d|n}\frac{\varphi(d)\cdot d}2$
$=n/2\cdot \sum\limits_{d|n}\varphi(d)\cdot d$
令$f(n)=\varphi(n)\cdot n$。显然是一个积性函数。所以$\sum\limits_{d|n}f(d)$是一个积性函数。所以可以线筛。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1000010
using namespace std;
typedef long long ll;
const int m=1000000;
int phi[N],prime[N],tot;
ll f[N];
bool np[N];
int main()
{
int cases,n;
for(int i=2;i<=m;i++)
{
if(!np[i]) phi[i]=i-1,prime[++tot]=i;
for(int j=1;j<=tot&&i*prime[j]<=m;j++)
{
np[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=2;i<=m;i++)
{
for(int j=i;j<=m;j+=i)
{
f[j]+=(ll)i*phi[i]/2;
}
}
scanf("%d",&cases);
while(cases--)scanf("%d",&n),printf("%lld\n",(f[n]+1)*n);
return 0;
}
小结:这种题推式子就好了啊qwq。
[bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Poj 2478-Farey Sequence 欧拉函数,素数,线性筛
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14291 Accepted: 5647 D ...
- 欧拉函数(线性筛)(超好Dong)
欧拉函数:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) . #include <bits/stdc++.h> using namespace std; cons ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Euler:欧拉函数&素数筛
一.欧拉函数 欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示. 通式: 其中p1, p2……pn为x的所有质因数,x是不为0的整数. 比如x=12,拆成质因数为12=2*2*3, ...
随机推荐
- C#窗体间传值的简便方法/工具
一.问题:窗体间传值必须需要窗体之间有联系,具体有如下方式 窗体间传值涉及到窗体A必须拥有窗体B,这样才可以实现A-B之间传值 窗体A与窗体B在窗体/实例C中,A-B可互相通讯 其他方式,不细讨论,复 ...
- PCB 利用nginx正向代理实现上网
在PCB行业中,为了保证服务器的安全性,服务器正常都是需要与外网断开的,如果想在服务器通过浏览器下载一点东西是不行.通常作法是在一台可以上网的电脑下载文件,接着放到网络盘上,再从网络盘拷贝到服务器上. ...
- Linux扩展正则表达式
1. 扩展正则表达式 1.1 +(加号) + 表示前一个字符出现1次或1次以上 1.1.1 理解+ 要求:取出文件内容连续出现的小写字母 [root@oldboyedu50-lnb /oldboy]# ...
- Python机器学习算法 — KNN分类
KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练 ...
- [Swift通天遁地]三、手势与图表-(3)通过捏合手势放大和缩小图像视图
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- memcache缓存系统
一.缓存系统 静态web页面: 1.在静态Web程序中,客户端使用Web浏览器(IE.FireFox等)经过网络(Network)连接到服务器上,使用HTTP协议发起一个请求(Request),告诉服 ...
- 洛谷2019 3月月赛 T3
题干 唯一AC T3 的大巨佬%%% 这题就是个大模拟吧. 题解
- [转]mysql的约束
转自:http://blog.csdn.net/kqygww/article/details/8882990 MySQL中约束保存在information_schema数据库的table_constr ...
- C#最实用的快捷键
Ctrl+J(Alt+→):智能提示. Ctrl+X:删除整行. Shift+Alt+Enter:全屏切换 F12:跳转到定义. Ctrl+-.Ctrl+Shift+-:上一步.下一步(仅限于使用过上 ...
- 3星|《刷新》:微软第三任CEO上任三年后的回顾
刷新:重新发现商业与未来 作者是微软第三任CEO,2014年2月上任.本书英文版出版于2017年9月,全书内容大致截至于2017年年初,算是作者上任三年后的回顾. 书中作者讲了不少自己的个人经历.作者 ...