Making the Grade 路面修整 bzoj-1592

题目大意:给你n段路,每段路有一个高度h[i],将h[i]修改成h[i]$\pm\delta$的代价为$\delta$,求将这n段路修成非严格单调的最小代价。

注释:1$\le$n$\le$2000,$1\le A_i\le 10^9$。

想法:我们先考虑单调递增。显然,我们期望所有数都尽量靠近原来的数。a数组是原来的高度数组,b数组是按照a的排序数组

  状态:dp[i][j]表示前i段路,且第j段路变成了b[j]的方案数。

  转移:f[i][j]=min(f[i-1][k])+abs(a[i]-b[j])(1<=k<=j)。

  具体地,这个$n^3$的dp的min我们可以在转移的过程中直接处理出,所以是$n^2$的。

最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
int n,m,mindp[2009][2009],dp[2009][2009],a[2009],b[2009],t[2009],ans;
void original()
{
for (int i=0;i<=n;i++)
for (int j=0;j<=m;j++)
mindp[i][j]=dp[i][j]=0;
}
void dispose()
{
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
dp[i][j]=mindp[i-1][j]+abs(a[i]-b[j]);
if (j!=1) mindp[i][j]=min(mindp[i][j-1],dp[i][j]);
else mindp[i][j]=dp[i][j];
}
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
t[i]=a[i];
}
sort(t+1,t+1+n);
int now=-1;
for(int i=1;i<=n;i++)
if(now!=t[i]) b[++m]=t[i],now=t[i];
original();
dispose();
ans=mindp[n][m];
for(int i=1;i<=m/2;i++) swap(b[i],b[m-i+1]);
original();
dispose();
ans=min(ans,mindp[n][m]);
printf("%d\n",ans);
return 0;
}

小结:dp总是神奇的qwq

[bzoj1592][Usaco09Feb]Making the Grade 路面修整_动态规划的更多相关文章

  1. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  2. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  3. [BZOJ 1592] Making The Grade路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 704  Solv ...

  4. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  5. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  6. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

  7. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  8. [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)

    传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...

  9. BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整

    n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...

随机推荐

  1. git期末总结(转载)

    转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/00137586810169 ...

  2. codevs1085数字游戏(环形DP+划分DP )

    1085 数字游戏  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单, ...

  3. C# 单例3种写法

    public class Singleton { private static Singleton _instance = null; private Singleton(){} public sta ...

  4. js判断客户端是手机端还是PC端

    封装函数: function isPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android", ...

  5. python中的深拷贝和浅拷贝(面试题)

    一.浅拷贝 定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值. 浅拷贝的特点: 公用一个值: 这两个变量的内存地址一样: 对其中一个变量的值改变,另外一个变量的值也 ...

  6. [转]linux sudo 命令

    转自:http://www.cnblogs.com/xiaochaohuashengmi/archive/2011/11/11/2245341.html “Sudo”是Unix/Linux平台上的一个 ...

  7. [转]Android自定义Adapter的ListView的思路及代码

    本文转自:http://www.jb51.net/article/37236.htm 在开发中,我们经常使用到ListView这个控件.Android的API也提供了许多创建ListView适配器的快 ...

  8. 深入理解async和await的作用及各种适用场景和用法

    https://www.cnblogs.com/yaopengfei/archive/2018/07/02/9249390.html https://www.cnblogs.com/xianyudot ...

  9. 【转】Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例

    概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMa ...

  10. MAC 中安装和使用express

    其实window系统和mac的操作在大致上其实是想同的,只是一些细节的区别,以下对在mac下安装和使用express做简要介绍,如有不妥之处请各位大神指教. 一.首先要测试node和npm是否已经正确 ...