Routh-Hurwitz Criterion

为什么仅仅要有一个极点在右半平面,那么系统就不会稳定?

比如H(s) =( 1/(s+1) ) *  ( 1/(s+3) ) * ( 1/(s-2) )

这里有个极点s = 2 在有半平面,通过laplace 反变换能够知道,当时间足够长的时候,AB都衰减的非常厉害了。而C却还在添加,这时候系统是不会稳定的

于是紧紧抓住这个特性不放,就会引出劳斯稳定判据。

右半平面的极点能够通过特征方程来判定

仅仅有当特征方程的全部系数都是同一个符号的时候。系统的根才会都落在左半平面

但凡有个特征方程系数有个符号不同样的出现。就会有根落在右半平面,这个时候系统就不会稳定

是不是特征方程全部的系数都同样那么全部的根就会落在左半平面呢?不一定!

以下这个样例就解出来0.5+_jsqrt(2.75)在右半平面。而全部的系数都是正数。

怎么检測这样的不稳定的情况呢?答案是劳斯判据

如果特征方程系数矩阵是[ 1 2 3 10 8]

于是填入劳斯表

依据(BC-AD)/B 的法则,能够求出其它元素。从而得到第一列数据

假设第一列数据有一次符号变化。就说明右半平面有一个根,两次就有两个根在右半平面,依次类推

如果有个系统的开环传递函数的特征方程系数是[1 10 35 50 24+K]

运用劳斯稳定判据,系统要稳定,第一列数据都必需要同符号

进而能够求出满足稳定要求的K的范围

对劳斯表进行求解,解出。系统要稳定。K 必须小于126

几种特殊情况

special case 1:

当某行有0元素出现时,而且这个0后面还有非零元素时。这个时候计算劳斯判据时。将0替换成epsilon。然后继续算其它未知元素,最后令epsilon趋向于0,

能够得到第一列元素。假设发生符号的改变,那么 系统是不稳定的

special case 2:

当某一行整行都是0的时候

处理方法是把全0行的上一行列出P(s)表达式,比例如以下图中的P(s) = 6*s^2 + 12*s^0 = 0

对P(S)进行求导,于是把得到的系数填到原本是全零行的地方/

总结

Routh-Hurwitz Criterion 劳斯稳定判据的更多相关文章

  1. 《自动控制原理》个人笔记(来自ppt课件)

    控制的含义 控制(CONTROL)----某个主体使某个客体按照一定的目的动作.主体–人:人工控制: 机器:自动控制客体–指一件物体,一套装置,一个物化过程,一个特定系统. 人工控制与自动控制 人在控 ...

  2. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  3. 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义

    傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...

  4. Page11:状态反馈、输出反馈的概念及性能比较,极点配置的基本概念、意义及其算法[Linear System Theory]

    内容包含离散时间线性时不变系统的稳定判据 状态反馈.输出反馈的基本概念及其性能比较 极点配置的基本概念.意义及其算法

  5. 直线电机设计与优化(TFLM,FSLM)论文阅读笔记3

    2.21-(2.7论文引出)傅里叶对开关磁通电机建模 Modeling of Flux Switching Permanent Magnet Machines With Fourier Analysi ...

  6. [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.4 稳定性

    9.4 稳定性 众所周知的是,增加反馈回路可能会导致原本稳定的系统变得不稳定.尽管原变换器传递函数(式(9.1))以及环路增益\(T(s)\)不包含右半平面极点,但式(9.4)的闭环传递函数仍然可能存 ...

  7. poj1228(稳定凸包+特判最后一条边)

    题目链接:https://vjudge.net/problem/POJ-1228 题意:我是真的没看懂题意QAQ...搜了才知道.题目给了n个点,问这n个点确定的凸包是否能通过添加点来变成一个新的凸包 ...

  8. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  9. 为什么现在很多年轻人愿意来北上广深打拼,即使过得异常艰苦,远离亲人,仍然义无反顾? 谈谈程序员返回家乡的创业问题 利基市场就是那些不大不小的缝隙中的市场 马斯洛的需求无层次不适合中国。国人的需求分三个层次——生存、稳定、装逼。对应的,国内的产品也分三个层次——便宜、好用、装B。人们愿意为这些掏钱

    信念.思考.行动-谈谈程序员返回家乡的创业问题 昨天晚上在微博上看了篇 <为什么现在很多年轻人愿意来北上广深打拼,即使过得异常艰苦,远离亲人,仍然义无反顾?>,有些话想说. 感觉很多人的担 ...

随机推荐

  1. DDos攻击的一些领域知识——(流量模型针对稳定业务比较有效)不稳定业务采用流量成本的检测算法,攻击发生的时候网络中各个协议的占比发生了明显的变化

    在过去,很多防火墙对于DDoS攻击的检测一般是基于一个预先设定的流量阈值,超过一定的阈值,则会产生告警事件,做的细一些的可能会针对不同的流量特征设置不同的告警曲线,这样当某种攻击突然出现的时候,比如S ...

  2. jdk5可变参数列表

    今天碰到了 public static String getAutoRelateRelationship(final JSONObject modifyJson, String... inUsedCo ...

  3. position记录元素原始位置

    position记录元素原始位置 css样式: li { width: 100px; height: 100px; margin: 10px 0 0 10px; background-color: # ...

  4. POJ 1654 乱搞题?

    题意: 从一个点出发,8个方向,给出每一步的方向,求出走过的路径形成的多边形的面积. 思路: 先普及一下向量叉乘.. (摘自度娘) 也就是x1y2-x2y1. 那这不就好说了嘛. 一个经过原点的闭合多 ...

  5. Selenium的文件上传JAVA脚本

    在写文件上传脚本的时候,遇到了很多问题,包括元素定位,以及上传操作,现在总结下来以下几点: 1. 上传的控件定位要准确,必要时要进行等待 WebElement adFileUpload = drive ...

  6. C#中图片转换为Base64编码,Base64编码转换为图片

    #region 图片转为base64编码的字符串 public string ImgToBase64String(string Imagefilename) { try { Bitmap bmp = ...

  7. java8-2-Lambda表达式

    java8的lambda表达式:使得代码更加紧凑:修改方法的能力:更好的支持多核处理(并行处理函数和filter\map\reduce) 例子1: java7中,list集合排序: public st ...

  8. Spark Streaming 整合 Kafka

    一:通过设置检查点,实现单词计数的累加功能 object StatefulKafkaWCnt { /** * 第一个参数:聚合的key,就是单词 * 第二个参数:当前批次产生批次该单词在每一个分区出现 ...

  9. 关于Eclipse安装Scala插件不显示

    关于Eclipse安装Scala插件不显示, 改变java版本仍然不能使用, 办法还是有的:下载Eclipse Scala版本 解压使用 下载在这里:http://scala-ide.org/down ...

  10. SPL类

    用途:对类,方法,属性,参数的提取生成文档:自动加载插件 实列化类同于new:$ref = new ReflectionClass($classname);$class = $ref->newI ...