哈理工2015暑假训练赛 zoj 2078Phone Cell
Phone CellTime Limit:10000MS Memory Limit:32768KB 64bit IO Format:%lld
& %llu
Description
Nowadays, everyone has a cellphone, or even two or three. You probably know where their name comes from. Do you. Cellphones can be moved (they are "mobile") and they use wireless connection to static stations called BTS (Base Transceiver Station). Each BTS
covers an area around it and that area is called a cell.
The Czech Technical University runs an experimental private GSM network with a BTS right on top of the building you are in just now. Since the placement of base stations is very important for the network coverage, your task is to create a program that will
find the optimal position for a BTS. The program will be given coordinates of "points of interest". The goal is to find a position that will cover the maximal number of these points. It is supposed that a BTS can cover all points that are no further than some
given distance R. Therefore, the cell has a circular shape.
The picture above shows eight points of interest (little circles) and one of the possible optimal BTS positions (small triangle). For the given distance
R, it is not possible to cover more than four points. Notice that the BTS does not need to be placed in an existing point of interest.
Input
The input consists of several scenarios. Each scenario begins with a line containing two integer numbers
N and R. N is the number of points of interest, 1 <=
N <= 2000. R is the maximal distance the BTS is able to cover, 0 <= R < 10000. Then there are
N lines, each containing two integer numbers Xi,
Yi giving coordinates of the i-th point, |Xi|, |Yi| < 10000. All points are distinct, i.e., no two of them will have the same coordinates.
The scenario is followed by one empty line and then the next scenario begins. The last one is followed by a line containing two zeros.
A point lying at the circle boundary (exactly in the distance R) is considered covered. To avoid floating-point inaccuracies, the input points will be selected in such a way that for any possible subset of points
S that can be covered by a circle with the radius R + 0.001, there will always exist a circle with the radius R that also covers them.
Output
For each scenario, print one line containing the sentence "It is possible to cover M points.", where
M is the maximal number of points of interest that may be covered by a single BTS.
Sample Input
8 2
1 2
5 3
5 4
1 4
8 2
4 5
7 5
3 3 2 100
0 100
0 -100 0 0
Sample Output
It is possible to cover 4 points.
It is possible to cover 2 points.
Notes
The first sample input scenario corresponds to the picture, providing that the X axis aims right and Y axis down.
本来模版中有个n^2算法的。可是超时。赛后百度了一下。还有nlogn算法的。
那么也能够当作模版来用了。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <algorithm> using namespace std ; const double eps = 1e-8 ;
const double PI = acos(-1.0) ;
int n ;
double r ; struct point
{
double x,y ;
}p[2010] ;
struct node
{
double angle ;
int flag ;
}q[4030] ; inline int dcmp(double d)
{
return d < -eps ? -1 : d > eps ;
}
bool cmp(const node &a,const node &b)//角度区间排序
{
if(dcmp(a.angle-b.angle) == 0 ) return a.flag > b.flag ;
return a.angle < b.angle ;
}
double Sqrt(double x)
{
return x*x ;
}
double dist(const point &a,const point &b)
{
return sqrt(Sqrt(a.x-b.x)+Sqrt(a.y-b.y)) ;
} int main()
{
while(~scanf("%d %lf",&n,&r))
{
if(n == 0) break ;
for(int i = 0 ; i < n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
int ans = 0 ;
for(int i = 0 ; i < n ; i++)
{
int m = 0 ;
for(int j = 0 ; j < n ; j++)
{
if(i == j) continue ;
double d = dist(p[i],p[j]) ;
if(d > 2*r+0.001) continue ;
double s = atan2(p[j].y-p[i].y,p[j].x-p[i].x) ;
if(s < 0) s += 2*PI ;//角度区间修正
double ph = acos(d/2.0/r) ;//圆心角转区间 q[m++].angle = s - ph + 2*PI ;q[m-1].flag = 1 ;
q[m++].angle = s + ph + 2*PI ;q[m-1].flag = -1 ;
}
sort(q,q+m,cmp) ;
int sum = 0 ;
for(int j = 0 ; j < m ; j++)
{
ans = max(ans,sum += q[j].flag) ; }
}
printf("It is possible to cover %d points.\n",ans+1) ;
}
return 0 ;
}
哈理工2015暑假训练赛 zoj 2078Phone Cell的更多相关文章
- 哈理工2015 暑假训练赛 zoj 2976 Light Bulbs
MS Memory Limit:65536KB 64bit IO Format:%lld & %llu SubmitStatusid=14946">Practice ...
- 哈理工2015暑假集训 zoj 2975 Kinds of Fuwas
G - Kinds of Fuwas Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu Subm ...
- 浙江理工2015.12校赛-A
孙壕请一盘青岛大虾呗 Time Limit: 5 Sec Memory Limit: 128 MB Submit: 577 Solved: 244 Description 话说那一年zstu与gdut ...
- 浙江理工2015.12校赛-F Landlocked
Landlocked Time Limit: 5 Sec Memory Limit: 128 MB Submit: 288 Solved: 39 Description Canada is not a ...
- 浙江理工2015.12校赛-G Jug Hard
Jug Hard Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1172 Solved: 180 Description You have two e ...
- 浙江理工2015.12校赛-B 七龙珠
七龙珠 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 781 Solved: 329 Description 话说孙壕请吃了青岛大虾后,一下子变穷了,就 ...
- 2015暑假训练(UVALive 5983 - 5992)线段树离线处理+dp
A: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83690#problem/A 题意:N*M的格子,从左上走到右下,要求在每个点的权值 ...
- [置顶] 2013_CSUST暑假训练总结
2013-7-19 shu 新生训练赛:母函数[转换成了背包做的] shuacm 题目:http://acm.hdu.edu.cn/diy/contest_show.php?cid=20083总结:h ...
- 暑假训练round 3 题解
今天做题运气出奇的好,除了几处小错误调试之后忘记改掉了……最后还AK了……虽然题目不难,学长也说是福利局,但是对个人的鼓励作用还是挺大的……至此暑假训练就结束了,也算没有遗憾……. 题解如下: Pro ...
随机推荐
- 关于wait notify notifyall的学习心得
wait()能让同步的线程挂起并将锁抛出,sleep只能使线程“睡了“,线程的锁并不会抛出,所以sleep还可以作用于非同步的线程.notify与notifyall能将被挂起或睡着的线程唤醒,但并不是 ...
- Spark SQL Catalyst源代码分析之Analyzer
/** Spark SQL源代码分析系列文章*/ 前面几篇文章解说了Spark SQL的核心运行流程和Spark SQL的Catalyst框架的Sql Parser是如何接受用户输入sql,经过解析生 ...
- 基于Apache CXF的Web Service服务端/客户端
转自:https://www.aliyun.com/zixun/wenji/1263190.html CXF服务端: package com.sean.server; import javax.jws ...
- 用户命令切换-命令su
命令su格式为su [-] username su su - su test su root
- 光标属性CSS cursor 属性
CSS cursor 属性 CSS cursor属性,以前不知道,如果以后用到自己看的 <html> <body> <p>请把鼠标移动到单词上,可以看到鼠标指针发生 ...
- CZLayer的阴影
CALayer有一个shadow属性 意思是阴影 shadowcolor //颜色 shadowoffset //偏移 shadowOpacity //透明度 layer有一个方法 mas ...
- 微信开发中的序列化json问题..
微信开发平台: https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list& ...
- Habernate配置一对一,一对多,多对多(二)
一.开篇 紧接着上篇的博客来写:http://www.cnblogs.com/WJ--NET/p/7845000.html(habernate环境的搭建) 二.配置一对一 2.1.新建客户类和公司类( ...
- Windows 安装 MySQL8
MySQL8下载地址:https://dev.mysql.com/downloads/mysql/ 解压到安装目录 新建配置文件my.ini [mysqld]# 设置mysql的安装目录basedir ...
- javascript中DOM基础知识介绍
1.1. 基本概念 1.1.1. DOM DOM Document Object Model 文档对象模型 就是把HTML文档模型化,当作对象来处理 DOM提供的一系列属性和方法可以 ...