Phone CellTime Limit:10000MS    Memory Limit:32768KB    64bit IO Format:%lld
& %llu

Description

Nowadays, everyone has a cellphone, or even two or three. You probably know where their name comes from. Do you. Cellphones can be moved (they are "mobile") and they use wireless connection to static stations called BTS (Base Transceiver Station). Each BTS
covers an area around it and that area is called a cell.

The Czech Technical University runs an experimental private GSM network with a BTS right on top of the building you are in just now. Since the placement of base stations is very important for the network coverage, your task is to create a program that will
find the optimal position for a BTS. The program will be given coordinates of "points of interest". The goal is to find a position that will cover the maximal number of these points. It is supposed that a BTS can cover all points that are no further than some
given distance R. Therefore, the cell has a circular shape.

The picture above shows eight points of interest (little circles) and one of the possible optimal BTS positions (small triangle). For the given distance
R, it is not possible to cover more than four points. Notice that the BTS does not need to be placed in an existing point of interest.

Input

The input consists of several scenarios. Each scenario begins with a line containing two integer numbers
N and R. N is the number of points of interest, 1 <=
N
<= 2000. R is the maximal distance the BTS is able to cover, 0 <= R < 10000. Then there are
N lines, each containing two integer numbers Xi,
Yi
giving coordinates of the i-th point, |Xi|, |Yi| < 10000. All points are distinct, i.e., no two of them will have the same coordinates.

The scenario is followed by one empty line and then the next scenario begins. The last one is followed by a line containing two zeros.

A point lying at the circle boundary (exactly in the distance R) is considered covered. To avoid floating-point inaccuracies, the input points will be selected in such a way that for any possible subset of points
S that can be covered by a circle with the radius R + 0.001, there will always exist a circle with the radius R that also covers them.

Output

For each scenario, print one line containing the sentence "It is possible to cover M points.", where
M is the maximal number of points of interest that may be covered by a single BTS.

Sample Input

8 2
1 2
5 3
5 4
1 4
8 2
4 5
7 5
3 3 2 100
0 100
0 -100 0 0

Sample Output

It is possible to cover 4 points.
It is possible to cover 2 points.

Notes

The first sample input scenario corresponds to the picture, providing that the X axis aims right and Y axis down.

本来模版中有个n^2算法的。可是超时。赛后百度了一下。还有nlogn算法的。

那么也能够当作模版来用了。

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <algorithm> using namespace std ; const double eps = 1e-8 ;
const double PI = acos(-1.0) ;
int n ;
double r ; struct point
{
double x,y ;
}p[2010] ;
struct node
{
double angle ;
int flag ;
}q[4030] ; inline int dcmp(double d)
{
return d < -eps ? -1 : d > eps ;
}
bool cmp(const node &a,const node &b)//角度区间排序
{
if(dcmp(a.angle-b.angle) == 0 ) return a.flag > b.flag ;
return a.angle < b.angle ;
}
double Sqrt(double x)
{
return x*x ;
}
double dist(const point &a,const point &b)
{
return sqrt(Sqrt(a.x-b.x)+Sqrt(a.y-b.y)) ;
} int main()
{
while(~scanf("%d %lf",&n,&r))
{
if(n == 0) break ;
for(int i = 0 ; i < n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
int ans = 0 ;
for(int i = 0 ; i < n ; i++)
{
int m = 0 ;
for(int j = 0 ; j < n ; j++)
{
if(i == j) continue ;
double d = dist(p[i],p[j]) ;
if(d > 2*r+0.001) continue ;
double s = atan2(p[j].y-p[i].y,p[j].x-p[i].x) ;
if(s < 0) s += 2*PI ;//角度区间修正
double ph = acos(d/2.0/r) ;//圆心角转区间 q[m++].angle = s - ph + 2*PI ;q[m-1].flag = 1 ;
q[m++].angle = s + ph + 2*PI ;q[m-1].flag = -1 ;
}
sort(q,q+m,cmp) ;
int sum = 0 ;
for(int j = 0 ; j < m ; j++)
{
ans = max(ans,sum += q[j].flag) ; }
}
printf("It is possible to cover %d points.\n",ans+1) ;
}
return 0 ;
}

哈理工2015暑假训练赛 zoj 2078Phone Cell的更多相关文章

  1. 哈理工2015 暑假训练赛 zoj 2976 Light Bulbs

    MS    Memory Limit:65536KB    64bit IO Format:%lld & %llu SubmitStatusid=14946">Practice ...

  2. 哈理工2015暑假集训 zoj 2975 Kinds of Fuwas

    G - Kinds of Fuwas Time Limit:2000MS    Memory Limit:65536KB    64bit IO Format:%lld & %llu Subm ...

  3. 浙江理工2015.12校赛-A

    孙壕请一盘青岛大虾呗 Time Limit: 5 Sec Memory Limit: 128 MB Submit: 577 Solved: 244 Description 话说那一年zstu与gdut ...

  4. 浙江理工2015.12校赛-F Landlocked

    Landlocked Time Limit: 5 Sec Memory Limit: 128 MB Submit: 288 Solved: 39 Description Canada is not a ...

  5. 浙江理工2015.12校赛-G Jug Hard

    Jug Hard Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1172 Solved: 180 Description You have two e ...

  6. 浙江理工2015.12校赛-B 七龙珠

    七龙珠 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 781 Solved: 329 Description 话说孙壕请吃了青岛大虾后,一下子变穷了,就 ...

  7. 2015暑假训练(UVALive 5983 - 5992)线段树离线处理+dp

    A: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83690#problem/A 题意:N*M的格子,从左上走到右下,要求在每个点的权值 ...

  8. [置顶] 2013_CSUST暑假训练总结

    2013-7-19 shu 新生训练赛:母函数[转换成了背包做的] shuacm 题目:http://acm.hdu.edu.cn/diy/contest_show.php?cid=20083总结:h ...

  9. 暑假训练round 3 题解

    今天做题运气出奇的好,除了几处小错误调试之后忘记改掉了……最后还AK了……虽然题目不难,学长也说是福利局,但是对个人的鼓励作用还是挺大的……至此暑假训练就结束了,也算没有遗憾……. 题解如下: Pro ...

随机推荐

  1. BAT常问问题总结以及回答(问题汇总篇)

    几个大厂的面试题目目录: java基础(40题)https://www.cnblogs.com/television/p/9397968.html 多线程(51题) 设计模式(8点) JVM(12题) ...

  2. 《深入理解Android 卷III》第六章 深入理解控件(ViewRoot)系统

    <深入理解Android 卷III>即将公布,作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分. ...

  3. Linux 下安装 jdk-7u79-linux-x64.gz,jdk1.7.0_79,jdk1.7步骤:

    1.首先下载对应CentOS版本的jdk:这里我下载的是jdk-7u79-linux-x64.tar.gz 2.上传到CentOS下的目录中 3.新建一个APP目录作为存储jdk的目录 4.解压jdk ...

  4. android:layout_gravity 和android:gravit的区别?

    Android:layout_gravity 和android:gravit的区别? android:gravity是调整元素本身的内容或元素包含的子元素显示的位置,默认是显示在左侧 android: ...

  5. Navicat Premium 12 模型导出sql

    找了半天,终于找到导出sql了!

  6. [jzoj 5661] 药香沁鼻 解题报告 (DP+dfs序)

    interlinkage: https://jzoj.net/senior/#contest/show/2703/0 description: solution: 注意到这本质就是一个背包,只是选了一 ...

  7. Underscore模板的使用

    一.开篇 下载underscode.js 二.使用 <!DOCTYPE html> <html lang="en"> <head> <me ...

  8. MEF example code

    public interface IObjectResolver { } public class ObjectResolver:IObjectResolver { private Compositi ...

  9. C++之易混淆知识点五

    一.解析类继承中父类与子类之间成员的访问可见度: 外部可见度:指的是被子类继承的父类成员在子类的外部访问控制度,有protected.public.private. 内部可见度:指的是被子类继承的父类 ...

  10. 有关PHP数组

    在PHP中,数组就是关键字和值的集合,我们可以使用array关键字创建: $arr=array[100,200,300,400,500]:           //这是一个自定义数组,数组里面的值是自 ...