UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci
The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) are defined by the recurrence:
F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1
Write a program which calculates Mn = Fn mod 2m for given pair of n and m. 0 ≤ n ≤ 2147483647
and 0 ≤ m < 20. Note that a mod b gives the remainder when a is divided by b.
Input
Input consists of several lines specifying a pair of n and m.
Output
Output should be corresponding Mn, one per line.
Sample Input
11 7
11 6
Sample Output
89
25
题解:
由于n<=2 147 483 647,直接for会超时。用矩阵快速幂就好了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
ll MOD;
struct Matrix {
ll mat[][];
}U,F;
Matrix multi (Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
ans.mat[i][j] = ;
for(int k = ; k < ; k++)
ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
ans.mat[i][j] %= MOD;
}
}
return ans;
}
Matrix powss(ll n) {
Matrix ans = U,p = F;
while(n) {
if(n&) ans = multi(ans,p);
n>>=;
p = multi(p,p);
}
return ans;
}
int main() {
U = {,,,};
F = {,,,};
ll n,m;
while(~scanf("%lld%lld",&n,&m)) {
MOD = 1ll<<m;
Matrix ans = powss(n);
printf("%lld\n",ans.mat[][]);
}
return ;
}
UVA - 10229 Modular Fibonacci 矩阵快速幂的更多相关文章
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- poj3070 Fibonacci 矩阵快速幂
学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...
- UVA 10229 Modular Fibonacci
斐波那契取MOD.利用矩阵快速幂取模 http://www.cnblogs.com/Commence/p/3976132.html 代码: #include <map> #include ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂
正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...
- POJ 3070 Fibonacci矩阵快速幂 --斐波那契
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...
随机推荐
- 大型Web 站点 Asp.net Session过期你怎么办
在 WEB 系统中. 我们通常会用session来保存一些简单可是却非常重要的信息.比方Asp.net中常常会用Session来保存用户登录信息,比方UserID.为了解决 WEB场大家採用了把ses ...
- 2014.04.16,读书,读书笔记-《Matlab R2014a完全自学一本通》-第17章 图形用户界面
界面对象分三类: 用户控件对象(uicontrol) 下拉式菜单对象(uimenu) 内容式菜单对象(uicontextmenu) 创建用户界面: 1.命令行方式 采用uicontrol来创建控件对象 ...
- C-结构体应用(10)
结构体是用来定义多种类型的复合类型,在 C语言中与类的区别在于结构体注重的是数据而类除了数据还包含函数,第2点区别在于结构体所声明的成员默认是"public"点.而类的默认是pri ...
- 2017第34周复习Java总结
从上周日开始对工作中遇到的Java相关的知识进行总结整理.先是回顾了Java关键字,重点说了static关键字的用法:修饰变量.程序块.内部类.方法.还静态导包:重点说了final关键字可以修饰类.方 ...
- POJ 2137 DP
思路: 枚举第一个点集中起点是哪个. 因为第i个点集总和第i-1个点集和第i+1个点集相连. 我们就可以DP求出最优解了. f[i][j]=min(f[i][j],f[i-1][k]+dis(i,j, ...
- activity_note
在activiti任务中,主要分为两大类查询任务(个人任务和组任务): 1.确切指定了办理者的任务,这个任务将成为指定者的私有任务,即个人任务. 2.无法指定具体的某一个人来办理的任务,可以把任务分配 ...
- UNP学习笔记3——基本UDP套接字编程
1 概述 TCP和UDP网络编程存在一些本质的差异,主要是由于传输层的差别:UDP是无连接的不可靠的数据报协议,而TCP是面向连接的字节流协议. 下图是典型的UDP客户端和服务器之间的通信流程.客户不 ...
- Java开发就业形势和面试技巧
如果从软件编程的就业来讲,如果你现在不懂架构,那么找到一份好工作还是比较难的,但是这里面有两点需要注意: 传统软件公司,这类公司还会使用最为原始的开发技术(SSH),但是这样的传统软件公司的招聘量已经 ...
- 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 状压动归
考场上空间开大了一倍就爆0了QAQ- Code: #include<cstdio> #include<algorithm> #include<cmath> usin ...
- Pyhton学习——Day25
#面向对象的几个方法#1.静态方法@staticmethod,不能访问类属性,也不能访问实例属性,只是类的工具包#2.类方法:@classmethod,在函数属性前加上类方法,显示为(cls)代表类, ...