HDU 4828 Grids

思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1。然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列。假设把0看成入栈,1看成出栈。那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了。然后去递推一下解,过程中须要求逆元去计算

代码:

#include <stdio.h>
#include <string.h> const int N = 1000005;
const long long MOD = 1000000007; long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
if(a == 0 && b == 0) return -1;
if(b == 0){x = 1; y = 0; return a;}
long long d = extend_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
} long long mod_reverse(long long a, long long n)
{
long long x,y;
long long d = extend_gcd(a, n, x, y);
if(d == 1) return (x % n + n) % n;
else return -1;
} int t, n;
long long Catalan[N]; int main() {
Catalan[1] = Catalan[2] = 1;
for (int i = 3; i < N; i++) {
long long tmp = mod_reverse((long long) i, MOD);
Catalan[i] = Catalan[i - 1] * (4 * i - 6) % MOD * tmp % MOD;
}
int cas = 0;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
printf("Case #%d:\n", ++cas);
printf("%lld\n", Catalan[n + 1]); }
return 0;
}

HDU 4828 (卡特兰数+逆元)的更多相关文章

  1. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  2. hdu 4828 Grids 卡特兰数+逆元

    Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Problem D ...

  3. hdu 5184 类卡特兰数+逆元

    BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...

  4. hdu 5673 Robot 卡特兰数+逆元

    Robot Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  5. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  6. hdu 1130,hdu 1131(卡特兰数,大数)

    How Many Trees? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. hdu 1023 卡特兰数+高精度

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. HDU 1023(卡特兰数 数学)

    题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n )  =  ( ( 4*n-2 ) / ...

  9. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

随机推荐

  1. vijos- P1385盗窃-月之眼 (水题 + python)

    P1385盗窃-月之眼 Accepted 标签:怪盗基德 VS OIBH[显示标签] 背景 怪盗基德 VS OIBH 第三话 描写叙述 怪盗基德第三次来到熟悉的OIBH总部.屡屡失败的OIBH这次看守 ...

  2. 2015.05.15,外语,学习笔记-《Word Power Made Easy》 01 “如何讨论人格特点”

    2015.03.17,外语,读书笔记-<Word Power Made Easy> 01 “如何讨论人格特点”学习笔记 SESSIONS 1 本来这些章节都是在一两年前学习的,现在趁给友人 ...

  3. 求区间连续不超过K段的最大和--线段树+大量代码

    题目描述: 这是一道数据结构题. 我们拥有一个长度为n的数组a[i]. 我们有m次操作.操作有两种类型: 0 i val:表示我们要把a[i]修改为val; 1 l r k:表示我们要求出区间[l,r ...

  4. dnscapy使用——本质上是建立ssh的代理(通过dns tunnel)

    git clone https://github.com/cr0hn/dnscapy.git easy_install Scapy 服务端: python dnscapy_server.py a.fr ...

  5. Maven + SpringMVC + Mybatis

    使用IDEA配置Maven + SpringMVC + Mybatis [一步一步踩坑详细配置完成] PS:初学,想使用Maven配置一个SpringMVC的开发环境,照着网上的各种图文解说,配置了好 ...

  6. 在Ubuntu Server下搭建LAMP环境

    1 LAMP的安装 LAMP通常是指Linux+Apache+MySQL+PHP组合形成的一套可以运行PHP程序的体系,并不是一个软件的名称.没有安装MySQL的服务器依然可以在其它条件完备的情况下运 ...

  7. BroadcastReceiver广播接受者简单使用

    1.注册BrocadcastReceiver <receiver android:name=".FirstReceiver" > <!-- 指定能够接收的广播类型 ...

  8. deploy springboot to tomcat

    1    在 Eclipse 中建立新的web项目[ABC],之后 转成Maven项目. 2   创建 class   Application 3  修改POM 4  修改web.xml 5  exp ...

  9. PHP-输入账号密码进入网页

    1. 2. 3. 4.(itcast.html步骤)随便一个本地网页代替即可

  10. ZBrush通过遮罩得到子物体

    ZBrush 中通过遮罩为模型添加子物体的方法简单且方便,我们可以通过按住Ctrl键绘制遮罩结合相关命令创建具有抽出厚度的模型提取出作为子物体附在模型表面.本文将详细介绍在Zbrush中如何通过遮罩得 ...