HDU 4828 (卡特兰数+逆元)
HDU 4828 Grids
思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1。然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列。假设把0看成入栈,1看成出栈。那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了。然后去递推一下解,过程中须要求逆元去计算
代码:
#include <stdio.h>
#include <string.h>
const int N = 1000005;
const long long MOD = 1000000007;
long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
if(a == 0 && b == 0) return -1;
if(b == 0){x = 1; y = 0; return a;}
long long d = extend_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
long long mod_reverse(long long a, long long n)
{
long long x,y;
long long d = extend_gcd(a, n, x, y);
if(d == 1) return (x % n + n) % n;
else return -1;
}
int t, n;
long long Catalan[N];
int main() {
Catalan[1] = Catalan[2] = 1;
for (int i = 3; i < N; i++) {
long long tmp = mod_reverse((long long) i, MOD);
Catalan[i] = Catalan[i - 1] * (4 * i - 6) % MOD * tmp % MOD;
}
int cas = 0;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
printf("Case #%d:\n", ++cas);
printf("%lld\n", Catalan[n + 1]);
}
return 0;
}
HDU 4828 (卡特兰数+逆元)的更多相关文章
- HDU 4828 (卡特兰数+逆)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...
- hdu 4828 Grids 卡特兰数+逆元
Grids Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Problem D ...
- hdu 5184 类卡特兰数+逆元
BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- hdu 1130,hdu 1131(卡特兰数,大数)
How Many Trees? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- hdu 1023 卡特兰数+高精度
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
随机推荐
- [HTML5] Why ARIA?
For some reason, you build a custom checkbox component, if without ARIA in mind, basiclly this site ...
- [HTML5] Semantics for accessibility
For example, when we use checkbox, if we do like this: <div class="inline-control sign-up co ...
- C++ 浅析 STL 中的 list 容器
list - 擅长插入删除的链表 链表对于数组来说就是相反的存在. 数组本身是没有动态增长能力的(程序中也必须又一次开辟内存来实现), 而链表强悍的就是动态增长和删除的能力. 但对于数组强悍的随机訪问 ...
- UVA - 10043 Chainsaw Massacre
Description Problem E: Chainsaw Massacre Background As every year the Canadian Lumberjack Society ...
- 杂项-电信:TL9000
ylbtech-杂项-电信:TL9000 TL9000是电信业质量体系要求(书1)与质量体系法则(书2)的指南, 它包括ISO9001的所有要求,以及硬件.软件, 服务方面行业的特别要求. 这些新增要 ...
- System.setProperty 与 System.getProperty
转自:https://www.cnblogs.com/woftlcj/p/8404451.html System可以有对标准输入,标准输出,错误输出流:对外部定义的属性和环境变量的访问:加载文件和库的 ...
- C#——单元测试
测试搭建请看:http://www.cnblogs.com/Look_Sun/p/4514732.html 右键不出现Generate Unit Test选项请参考:http://www.jb51.n ...
- C# MVC登录判断状态
public class AuthenAdminAttribute:FilterAttribute,IAuthorizationFilter { public void OnAuthenticatio ...
- layui的多文件列表上传功能前端代码
html页面的代码(注意:引入layui相关的css): <div class="layui-upload" style="margin-left: 130px&q ...
- 用endnote导入bib
首先一般时候需要把IEEE的style包导入. https://endnote.com/downloads/styles/ 具体方法可参考http://muchong.com/html/201006/ ...