题目描述

淘汰赛制是一种极其残酷的比赛制度。2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐。每一轮中,将所有参加该轮的选手按标号从小到大排序后,第1位与第2位比赛,第3位与第4位比赛,第5位与第6位比赛……只有每场比赛的胜者才有机会参加下一轮的比赛(不会有平局)。这样,每轮将淘汰一半的选手。n轮过后,只剩下一名选手,该选手即为最终的冠军。

现在已知每位选手分别与其他选手比赛获胜的概率,请你预测一下谁夺冠的概率最大。

输入输出格式

输入格式:

输入文件elimination.in。第一行是一个整数n(l≤n≤l0),表示总轮数。接下来2^n行,每行2^n个整数,第i行第j个是Pij(0≤pij≤100,Pii=0,Pij+Pji=100),表示第i号选手与第j号选手比赛获胜的概率。

输出格式:

输出文件elimination.out。只有一个整数c,表示夺冠概率最大的选手编号(若有多位选手,输出编号最小者)。

输入输出样例

输入样例#1:

  2
0 90 50 50
10 0 10 10
50 90 0 50
50 90 50 0
输出样例#1:

 1

说明

30%的数据满足n≤3;100%的数据满足n≤10。

_NOI导刊2010提高(01)

思路:

对于样例,我们可以模拟一下:

1号选手通过第1轮(进入决赛)的概率为90%,即击败2号选手的概率。同理,2号选手通过第1轮的概率为10%,3号,4号选手都是50%。

对于3号选手通过第2轮(通过第n轮夺冠)的概率,我们可以分情况讨论。假设3号选手已经通过第1轮。如果1号选手通过第1轮(90%的可能性),则3号选手通过第2轮的概率为50%,即击败1号选手的概率,所以3号选手击败1号选手通过第2轮的概率为90%*50%=45%;如果2号选手通过第1轮(10%的可能性),则3号选手通过第2轮的概率为90%,即击败2号选手的概率,所以3号选手击败2号选手通过第2轮的概率为10%*90%=9%。所以3号选手击败对手通过第2轮的概率为45%+9%=54%,而这是在3号选手已经通过第1轮的基础上的概率,自然,3号选手最初时通过第2轮的概率只有50%*54%=27%。

同理,4号选手最初时通过第2轮的概率为27%,1号选手通过第2轮的概率为45%,2号选手为1%,45%>27%>27%>1%,所以答案输出1。

所以:每一位选手通过这一轮的概率为这一位选手通过上一轮的概率乘上这一位选手击败这一轮遇到的每一个对手的概率之和

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,num;
double maxn=-;
double map[][];
double f[],ff[];
int main(){
scanf("%d",&n);
num=pow(,n);
for(int i=;i<=num;i++)
for(int j=;j<=num;j++){
int x;
scanf("%d",&x);
map[i][j]=x*1.0/*1.0;
}
for(int i=;i<=num;i++)
if(i%==) f[i]=map[i][i-];
else f[i]=map[i][i+];
for(int i=;i<=n;i++){
for(int j=;j<=num;j++){
double bns=;
int l,r,aa=pow(,i-),tmp=(j-)/aa;
if(tmp%==){ l=aa*(tmp+)+; r=aa*(tmp+); }
else{ l=aa*(tmp-)+; r=aa*tmp; }
for(int k=l;k<=r;k++)
bns+=f[k]*map[j][k];
ff[j]=f[j]*bns;
}
for(int j=;j<=num;j++)
f[j]=ff[j];
}
int ans;
for(int i=;i<=num;i++)
if(f[i]>maxn){
ans=i;
maxn=f[i];
}
cout<<ans;
}

洛谷 P1769 淘汰赛制_NOI导刊2010提高(01)的更多相关文章

  1. 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告

    P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...

  2. 洛谷 P1801 黑匣子_NOI导刊2010提高(06)(未完)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

  3. [洛谷P1801]黑匣子_NOI导刊2010提高(06)

    题目大意:两个操作:向一个可重集中加入一个元素:询问第$k$大的数($k$为之前询问的个数加一) 题解:离散化,权值线段树直接查询 卡点:无 C++ Code: #include <cstdio ...

  4. 洛谷 P1801 黑匣子_NOI导刊2010提高(06)

    题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两种: ...

  5. 洛谷 P1801 黑匣子_NOI导刊2010提高(06) 题解

    昨晚恶补了一下二叉堆的内容 然后就找了几个二叉堆的题来做awa 然后发现用二叉堆做这题复杂度是O(nlogn) 但是有O(n)的解法 (某大佬这么说) 思路大概就是: 利用一个大根堆一个小根堆来维护第 ...

  6. 洛谷 P1950 长方形_NOI导刊2009提高(2)

    传送门 思路 首先定义\(h\)数组,\(h[i][j]\)表示第\(i\)行第\(j\)列最多可以向上延伸多长(直到一个被用过的格子) 然后使用单调栈算出 \(l_i\)和 \(r_i\) ,分别是 ...

  7. 淘汰赛制_NOI导刊2010提高(01)

    题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加该轮的选手按标号从小到大排序后,第1位与第2位比赛,第 ...

  8. 洛谷 P1767 家族_NOI导刊2010普及(10)

    题目描述 在一个与世隔绝的岛屿上,有一个有趣的现象:同一个家族的人家总是相邻的(这里的相邻是指东南西北四个方向),不同的家族之间总会有河流或是山丘隔绝,但同一个家族的人不一定有相同姓氏.现在给你岛上的 ...

  9. 洛谷——P1767 家族_NOI导刊2010普及(10)

    P1767 家族_NOI导刊2010普及(10) 题目描述 在一个与世隔绝的岛屿上,有一个有趣的现象:同一个家族的人家总是相邻的(这里的相邻是指东南西北四个方向),不同的家族之间总会有河流或是山丘隔绝 ...

随机推荐

  1. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study(树状数组)

    Output For each question, output one line with one integer represent the answer. 样例输入 5 3 1 2 3 4 5 ...

  2. Js中遇到的坑点汇总

    一.Android 手机下输入框获取焦点时, 输入法挡住输入框的 bug 解决思路: 1.去掉overflow属性 2. Android 手机下, input 或 textarea 元素聚焦时, 主动 ...

  3. 在vue组件中style scoped中遇到的坑

    在uve组件中我们我们经常需要给style添加scoped来使得当前样式只作用于当前组件的节点.添加scoped之后,实际上vue在背后做的工作是将当前组件的节点添加一个像data-v-1233这样唯 ...

  4. vue源码之响应式数据

    分析vue是如何实现数据响应的. 前记 现在回顾一下看数据响应的原因. 之前看了vuex和vue-i18n的源码, 他们都有自己内部的vm, 也就是vue实例. 使用的都是vue的响应式数据特性及$w ...

  5. HTTP——学习笔记(8)

    HTTP中的一些协议内容会限制某些网站的功能使用 比如,Facebook这类的社交网站,需要实时地观察到海量用户公开发布的内容,而HTTP中的以下标准就会成为瓶颈: 一条连接上只可发送一个请求 请求只 ...

  6. 【codeforces 411B】Multi-core Processor

    [题目链接]:http://codeforces.com/problemset/problem/411/B [题意] 处理器有n个核;然后有k个存储单元; 有m轮工作;每轮工作都会给每个核确定一个数字 ...

  7. SGU 210 Acdream 1227 Beloved Sons KM

    题目链接:点击打开链接 题意: 给定n个人 每一个人的点权 以下n行i行表示第i个人能够获得哪些数(数字从1-n.且不能反复分配) 若这个人获得了数字则你能够获得他的权值. 要你能获得的权值和最大. ...

  8. 文件共享服务器nfs搭建过程

    网络文件共享服务器192. yum install -y nfs-utils 在exports文件中添加的从机范围 vim /etc/exports /home/nfs/ (rw,sync,fsid= ...

  9. svn回到某个历史版本的做法

    作者:朱金灿 来源:http://blog.csdn.net/clever101 一.在选中的文件上弹出svn的右键菜单,单击"Updateto revision"菜单项,如下图: ...

  10. 为Activity生成桌面快捷方式

    有时候如果想让我们的应用在桌面上创建多个快捷方式,我们可以在Manifest.xml文件中对相应的activity进行声明. <application android:icon="@d ...