SparkSQL基础
* SparkSQL基础
起源:
1、在三四年前,Hive可以说是SQL on Hadoop的唯一选择,负责将SQL编译成可扩展的MapReduce作业。鉴于Hive的性能以及与Spark的兼容,Shark项目由此而生。
2、Shark即Hive on Spark,本质上是通过Hive的HQL解析,把HQL翻译成Spark上的RDD操作,然后通过Hive的metadata获取数据库里的表信息,实际HDFS上的数据和文件,会由Shark获取并放到Spark上运算。
3、Shark的最大特性就是快和与Hive的完全兼容,且可以在shell模式下使用rdd2sql()这样的API,把HQL得到的结果集,继续在scala环境下运算,支持自己编写简单的机器学习或简单分析处理函数,对HQL结果进一步分析计算。
历史:
1、在2014年7月1日的Spark Summit上,Databricks宣布终止对Shark的开发,将重点放到Spark SQL上。
2、Databricks表示,Spark SQL将涵盖Shark的所有特性,用户可以从Shark 0.9进行无缝的升级。
3、Databricks推广的Shark相关项目一共有两个,分别是Spark SQL和新的Hive on Spark(HIVE-7292)
4、Databricks表示,Shark更多是对Hive的改造,替换了Hive的物理执行引擎,因此会有一个很快的速度。然而,不容忽视的是,Shark继承了大量的Hive代码,因此给优化和维护带来了大量的麻烦。
SparkSQL与HIVE集成
1、拷贝hive-site.xml到spark-conf目录下
2、$ mkdir externaljars
3、拷贝hive下面的mysql驱动到spark的externaljars目录下
4、启动Spark-Shell
$ bin/spark-shell --master local[2] --jars externaljars/mysql-connector-java-5.1.27-bin.jar
在SparkSQL中读取表的两种方式:
方式一:
直接使用sqlContext对象执行sql语句,返回一个DataFrame对象,然后我们就可以show一下表中的内容了
scala> val df = sqlContext.sql("select * from track_log")
scala> df.show
方式二:
使用DSL(Domain specific language)语句
scala> val df = sqlContext.table("track_log")
scala> df.select("id", "sessionid").show
测试练习:
案例中涉及到的数据在之前的Hive章节中已经有所介绍,数据也提供了传送门下载地址,不再赘述,内容如下:

案例一:尝试使用sqlContext查询一张表,将部门编号相同的信息统一join到一起。

案例二:尝试使用spark-sql运行如下命令
Step1、启动spark-sql
$ bin/spark-sql
Step2、将表直接缓存到内存中,在4040端口即可查看缓存到的表数据占用内存的大小,操作如下:
缓存表
spark-sql> cache table track_log
撤销缓存的表
spark-sql>uncache table track_log
案例三:每个部门的工资按照降序排列
可以使用SparkSQL执行如下代码:

如果我们只想展示出每个部门前三名的工资,可以这样操作:

当然了,求个平均什么的,再正常不过了。
* 总结
只要你的SQL语句用得好,sparkCore理解的通透,Hive玩的6,SparkSQL就会很简单。:)
个人微博:http://weibo.com/seal13
QQ大数据技术交流群(广告勿入):476966007
作者:Z尽际
链接:https://www.jianshu.com/p/7408b03a3c92
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
SparkSQL基础的更多相关文章
- SparkSQL基础应用(1.3.1)
一.概述 从1.3版本开始Spark SQL不再是测试版本,之前使用的SchemaRDD重命名为DataFrame,统一了Java和ScalaAPI. SparkSQL是Spark框架中处理结构化数据 ...
- sparksql基础知识二
目标 掌握sparksql操作jdbc数据源 掌握sparksql保存数据操作 掌握sparksql整合hive 要点 1. jdbc数据源 spark sql可以通过 JDBC 从关系型数据库中读取 ...
- sparksql基础知识一
目标 掌握sparksql底层原理 掌握sparksql中DataFrame和DataSet的数据结构和使用方式 掌握通过sparksql开发应用程序 要点 1.sparksql概述 1.1 spar ...
- SparkSQL个人记录
SparkSQL将RDD封装成一个DataFrame对象,这个对象类似于关系型数据库中的表. 一.SparkSQL入门 1.创建DataFrame 相当于数据库中的一张表,它是一个只读的表,不能在运算 ...
- CarbonData:大数据融合数仓新一代引擎
[摘要] CarbonData将存储和计算逻辑分离,通过索引技术让存储和计算物理上更接近,提升CPU和IO效率,实现超高性能的大数据分析.以CarbonData为融合数仓的大数据解决方案,为金融转型打 ...
- Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作
8. Dataset (DataFrame) 的基础操作 8.1. 有类型操作 8.2. 无类型转换 8.5. Column 对象 9. 缺失值处理 10. 聚合 11. 连接 8. Dataset ...
- 基础的 sparkSQL操作
spark连接mysql操作 数据库jdbc 连接封装 package test.com import org.apache.spark.sql.{DataFrame, SparkSession} / ...
- Spark入门实战系列--6.SparkSQL(中)--深入了解SparkSQL运行计划及调优
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.1 运行环境说明 1.1.1 硬软件环境 线程,主频2.2G,10G内存 l 虚拟软 ...
- Spark入门实战系列--6.SparkSQL(下)--Spark实战应用
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l 虚拟软件:VMwa ...
随机推荐
- xftp和xshell的使用
Xftp和Xshell配合使用部署环境. (linux系统) Xftp为可视化工具.主要用来复制文件. xshell则通过输入命令来对server进行操作,如启动服务等等. 一. Xftp的连接 新 ...
- hdu 3449 Consumer (依赖01背包)
题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...
- 解题报告 之 HDU5317 RGCDQ
解题报告 之 HDU5317 RGCDQ Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to ...
- 343D/Codeforces Round #200 (Div. 1) D. Water Tree dfs序+数据结构
D. Water Tree Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each ...
- setsockopt 设置socket
1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:BOOL bReuseaddr=TRUE;setsockopt(s,SOL_SOCKET ,SO ...
- phpstorm 或 webstorm 设置打开多个项目,多个项目并存。
File -> settings -> Directories -> Add Content Root 中添加你当前的工程目录. 这样就可以节省内存了.之前用一个打开php项目,一个 ...
- nyoj--325--zb的生日(简单dp)
zb的生日 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 今天是阴历七月初五,acm队员zb的生日.zb正在和C小加.never在武汉集训.他想给这两位兄弟买点什么庆祝 ...
- linux下挂载ISCSI存储设备
安装 首先要在存储设备上做好RAID,设置好iSCSI 目标方(target). 这里主要说明iSCSI initiator的安装. 不同的操作系统对应各自的iSCSI initiator,以Redh ...
- B树索引与索引优化
B树索引与索引优化 MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为“BTREE”),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引 ...
- 无法连接虚拟设备 ide1:0,因为主机上没有相应的设备。您要在每次开启此虚拟机时都尝试连接此虚拟设备吗?
转自:http://blog.51cto.com/thawliu/1704876 安装虚拟机时出现提示:无法连接虚拟设备 ide1:0,因为主机上没有相应的设备.您要在每次开启此虚拟机时都尝试连接此虚 ...