C# 蚁群优化算法实现
C# 蚁群优化算法实现
需求为(自己编的,非实际项目):
某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下:
- 现有车辆5台
- 单台运力最大行驶距离200千米
- 单台运力最大载重公斤1吨
问:运力怎样走法才能以最低的成本完成针对这50个客户的揽货行为
是个最优化问题(运筹学),我们只考虑简化后的模型,不考虑路面交通、时间窗口这些复杂计算,用蚁群优化算法来实现接近最优解的计算。
关于蚁群优化算法的理论请看这篇文章:https://www.cnblogs.com/asxinyu/p/Path_Optimization_Tsp_Problem_Ant_System_CSharp.html
里面的基本算法已经写明了,也有demo,本文是针对如何适应到具体业务的介绍(本文用的蚁群核心代码也是上文中改来的)
蚁群主要步骤为:
- 初始化(如信息素)
- 开始迭代
- 构造各个蚂蚁,以及蚂蚁走的路径(核心是针对后续节点的SELECT)
- 计算适应度
- 加入优秀蚂蚁到跟踪列表
- 更新信息素(根据适应度)
- 结束迭代
- 给出报告
原文章里用的是TSP做DEMO,比较难看清楚如何应用到实际业务逻辑中
同样的,最困惑的核心中的核心,类似遗传算法,也是适应度值的计算,有的地方是一步一步增加vlaue,比如单纯距离的增加,但是复杂点的都没法这么操作,而是要看整体路径的指标(包括惩罚等)
由于蚁群优化算法和本文代码都能下载,所以只介绍适应度value的计算

class FitnessValueCalculator
{
private static int 拥有运力车辆数 = 5;
private static int 单台运力最大行驶距离 = 200;
private static int 单台运力最大载重公斤 = 1000;
private static double 惩罚权重 = 20; public static double Calculator(ShortestDeliverAnt ant)
{
var paths = new List<string>(); var distances = new List<double>();
var weights = new List<double>(); double 当前行驶距离 = 0;
double 当前运力载重 = 0;
string 当前行驶路径 = "";
int 当前所需运力数 = 1; //计算枢纽到第一个客户配送距离
当前行驶路径 += "HUB-->" + ant.PathNodes.First();
当前行驶距离 += ant.DistanceHelper.hub.DistanceTo(ant.DistanceHelper.customers[ant.PathNodes.First()]);
当前运力载重 += ant.DistanceHelper.customers[ant.PathNodes.First()].需求量_公斤; foreach (var path in ant.Edges)
{
var fromNodeId = path.Key;
var toNodeId = path.Value; var fromNode = ant.DistanceHelper.customers[fromNodeId];
var toNode = ant.DistanceHelper.customers[toNodeId]; double newAddedDistance2Customer = 0;
double newAddedDistance2Hub = 0;
double newAddedWeight = 0; newAddedDistance2Customer = fromNode.DistanceTo(toNode);
newAddedDistance2Hub = toNode.DistanceTo(ant.DistanceHelper.hub); newAddedWeight = toNode.需求量_公斤; if (当前行驶距离 + newAddedDistance2Customer + newAddedDistance2Hub <= 单台运力最大行驶距离
&&
当前运力载重 <= 单台运力最大载重公斤)
{
当前行驶距离 += newAddedDistance2Customer;
当前运力载重 += newAddedWeight;
当前行驶路径 += "-->" + toNodeId;
}
else
{
//加当前客户距离、以及回到HUB的距离
当前行驶距离 += fromNode.DistanceTo(ant.DistanceHelper.hub);
distances.Add(当前行驶距离); weights.Add(当前运力载重); 当前行驶路径 += "-->HUB";
paths.Add(当前行驶路径); //RESET
当前行驶距离 = 0;
当前行驶距离 += ant.DistanceHelper.hub.DistanceTo(toNode); 当前运力载重 = 0;
当前运力载重 += toNode.需求量_公斤; 当前行驶路径 = "";
当前行驶路径 += "HUB-->" + toNodeId; 当前所需运力数++;
}
} //回到枢纽
当前行驶距离 += ant.DistanceHelper.customers[ant.PathNodes.Last()].DistanceTo(ant.DistanceHelper.hub);
distances.Add(当前行驶距离); 当前行驶路径 += "-->HUB";
paths.Add(当前行驶路径); int 惩罚系数 = 0;
if (当前所需运力数 > 拥有运力车辆数)
惩罚系数 = 当前所需运力数 - 拥有运力车辆数; ant.运输距离顺序 = distances;
ant.运输路径 = paths; ant.Total行驶距离 = distances.Sum();
ant.Total运力数 = 当前所需运力数; return ant.Total行驶距离 + 惩罚系数 * 惩罚权重;
}
}

ant.DistanceHelper.hub: 是配送中心的info,有地址信息
ant.DistanceHelper.customers: 是50个客户的info,也有地址信息
目前为了简化,是以街道距离来计算距离的
目前代码只是单目标优化算法,非多目标优化,后续研究研究再发文。
上述代码其实就是第一辆车从配送中心开出到第一个客户位置,然后加上客户需求(揽的货物重量)
接着判断能否开到下一个客户那里揽货,如果里程、重量都在限制条件只能,就开过去,不满足条件就开回枢纽;然后继续判断第二辆车,也是这么个逻辑
最终车辆的数量就是完成这50个客户揽货所需的运力数
万一碰到所需运力超出了限制(代码中为5辆车),这时就需要惩罚,由于最终函数返回是double,而且是越小代表越优越,因此碰到了需要惩罚的情况,实际就是大幅度的增加返回值(适应度值)
红色部分就是惩罚变量部分。 各种优化算法的核心写完框架后基本就不怎么变化了,最易变的其实是适应度函数的计算,如果适应度计算中用到了预测技术,还得在上面那函数里调机器学习的代码,感觉强化学习中动作施加后给出的反馈值也是这么个值
C# 蚁群优化算法实现的更多相关文章
- 揽货最短路径解决方案算法 - C# 蚁群优化算法实现
需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能 ...
- MATLAB粒子群优化算法(PSO)
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optim ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- 粒子群优化算法PSO及matlab实现
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...
- 计算智能(CI)之粒子群优化算法(PSO)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...
- 【CI】CN.一种多尺度协同变异的微粒群优化算法
[论文标题]一种多尺度协同变异的微粒群优化算法 (2010) [论文作者]陶新民,刘福荣, 刘 玉 , 童智靖 [论文链接]Paper(14-pages // Single column) [摘要] ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...
随机推荐
- Android UI布局之TableLayout
从字面上了解TableLayout是一种表格式的布局.这样的布局会把包括的元素以行和列的形式进行排列.表格的列数为每一行的最大列数.当然表格里边的单元格是能够为空的. 实例:LayoutDemo 执行 ...
- dom 编程(html和xml)
html dom与xml dom关系: 什么是 DOM? DOM 是 W3C(万维网联盟)的标准. DOM 定义了訪问 HTML 和 XML 文档的标准: "W3C 文档对象模型 (DOM) ...
- DNS Tunnel判定方法
DNS Tunnel判定方法: 1.查询DNS请求的域名是否存在备案: 2.查询DNS请求的域名情报信息(以及域名的alex排名): 3.查看相同主域名下子域名编码格式及长度:(存在Base32和Ba ...
- 几个常用ORACLE运维监控的SQL语句
1.消耗CPUSELECT a.CPU_TIME, --CPU时间 百万分之一(微秒) a.OPTIMIZER_MODE,--优化方式 a.EXEC ...
- 4.git "Could not read from remote repository.Please make sure you have the correct access rights."解决方案
转自:https://zhiku8.com/git-could-not-read-from-remote-repository.html 我们在使用git clone 或其他命令的时候,有时候会遇到这 ...
- 基于Zepto移动端下拉加载(刷新),上拉加载插件开发
写在前面:本人水平有限,有什么分析不到位的还请各路大神指出,谢谢. 这次要写的东西是类似于<今日头条>的效果,下拉加载上啦加载,这次做的效果是简单的模拟,没有多少内容,下面是今日头条的移动 ...
- Photoshop CC (2015.2) 2016.1 版
1.设计空间(预览版)增强 Design Space (Preview) 2.画板 3.Surface Pro触屏优化(多种手势) 4.自定义工具栏和工作区 5.字体收藏夹(要死掉一批扩展) 6.库( ...
- Android Handling back press when using fragments in Android
In MainActivity: getSupportFragmentManager().beginTransaction().replace(R.id.gif_contents, gifPageTw ...
- 3ds Max绘制一个漂亮的青花瓷碗3D模型
这篇教程向小伙伴门介绍使用3ds Max绘制一个漂亮的青花瓷碗3D模型方法,教程很不错,很适合大家学习,推荐过来,一起来学习吧! 车削,材质贴图的应用,添加位图,渲染视图 步骤如下: 在桌面找到3DM ...
- [ZJOI2015]诸神眷顾的幻想乡 广义后缀自动机_DFS_语文题
才知道题目中是只有20个叶子节点的意思QAQ.... 这次的广义后缀自动机只是将 last 设为 1, 并重新插入. 相比于正统的写法,比较浪费空间. Code: #include <cstdi ...