Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接:
http://codeforces.com/problemset/problem/140/E
题意:
圣诞树上挂彩球,要求从上到下挂\(n\)层彩球。已知有\(m\)种颜色的球,球的数量不限。
要求结果对\(p\)取模。然后给你\(n\)个数,表示第 \(i\) 根绳长 \(l_i\),也就是要挂 \(l_i\) 个球。
\(1.\)要求每根绳上相邻彩球颜色不同。
\(2.\)相邻的绳子上挂的彩球种类不能相同。
题解:
我们先解决子问题,先考虑第 \(i\) 层上能放多少个球,\(a[i][j]\)表示长为\(i\)的绳子上放\(j\)种球的方案数,考虑的其实就是\(j\)种小球往\(i\)个无编号的盒子里放,每个盒子放一个,相邻盒子小球不一样,
\(a[i−1][j−1]\)表示\(i−1\)个盒子放\(j−1\)种小球,变成 \(i\) 盒子 \(j\)小球,就是新添加一个小球放进一个新的盒子里。
\(a[i−1][j]\)表示\(i−1\)个盒子\(j\)种小球,新添加一个盒子时可以放除了相邻盒子中的小球外任意小球,即 \((j−1)\) 个。
所以,\(a[i][j]=a[i−1][j−1]+a[i−1][j]∗(j−1)\)。显然这就是第二类斯特林数。
我们再考虑 \(dp[i][j]\)表示在第\(1\)到\(i−1\)根绳子排列合法的情况下,第\(i\)根绳子用 \(j\) 种小球的合法方案数。
那么,\(dp[i][j] = \sum\limits_{i = 1}^{m}\sum\limits_{j = 1 }^{l[i]} [dp[i-1][j]*(绳子i上放j 种小球的合法方案数)-(绳子i与绳子i-1用同样小球的方案数)(i > 1)(j <= l[i-1])]\)。
所以,
绳子\(i\)上放\(j\)种小球的合法情况有: \(a[i][j]*A_k^j\) (其中\(k\) 为可以选择的颜色数量)。
绳子\(i\)与绳子\(i-1\)用同样小球的方案数就是:\(dp[i-1][j]*a[i][j]*A_j^j\)。
最后把该预处理的都预处理一下就可以了。
\(dp\) 那个数组好难开。。。最后\(resize\)一下过了....没有\(c++11\)我可能啥都写不出来....
代码:
#include<bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const double eps = 1e-9;
const int maxn = 1001000;
int l[maxn],a[5201][5201],fac[5201],rfac[5201];
//int dp[5201][5201];
std::vector<int> dp[maxn];
int main(int argc, char const *argv[]) {
int n,m,p;
std::cin >> n >> m >> p;
int sz = 0 ;
for(int i=1;i<=n;i++) {
std::cin >> l[i];
//sz = max(l[i],sz);
dp[i].resize(l[i]+1);
}
// vector<vector<int>> dp(sz + 1, vector<int>(sz + 1, 0));
fac[0] = 1;
rfac[0] = 1;
for(int i=1;i<=5010;i++) {
fac[i] = 1LL * fac[i-1] * i % p;
rfac[i] = 1LL * rfac[i-1] * (m - i + 1) % p ;
}
a[0][0] = 1;
for(int i=1;i<=5010;i++) {
for(int j=1;j<=i;j++) {
a[i][j] = (a[i-1][j-1] + 1LL * a[i-1][j] * (j-1) % p) % p;
}
}
int sum = 1;
int ans = 0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=l[i];j++) {
dp[i][j] = 1LL * sum * rfac[j] % p * a[l[i]][j] % p;
if(i > 1 && j <= l[i-1]) {
dp[i][j] = (dp[i][j] - 1LL * dp[i-1][j] * a[l[i]][j] % p * fac[j] % p + p) % p;
}
ans = (ans + dp[i][j]) % p;
}
sum = ans;
ans = 0;
}
std::cout << sum << '\n';
return 0;
}
Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)的更多相关文章
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- codeforces 1278F - Cards(第二类斯特林数+二项式)
传送门 解题过程: \(答案=\sum^n_{i=0}*C^i_n*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}*i^k\) 根据第二类斯特林数的性质\(n^k=\sum ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- HDU2643(SummerTrainingDay05-P 第二类斯特林数)
Rank Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- Gym Gym 101147G 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G 题意:n个人,去参加k个游戏,k个游戏必须非空,有多少种放法? 分析: 第二类斯特林数,划分好k个集合后 ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- HDU2512 一卡通大冒险 —— 第二类斯特林数
题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
随机推荐
- 紫书 例题 9-3 UVa 1347 ( 状态设计)
首先做一个转化,这种转化很常见. 题目里面讲要来回走一遍,所以就转化成两个从起点到终点,路径不重合 那么很容易想到用f[i][j]表示第一个走到i,第二个人走到j还需要走的距离 但是这里无法保证路径不 ...
- Springboot 获取yml、properties参数
获取properties或yml文件的配置数据(两种方法)(默认的application文件或者自定义的yml和properties) 1.使用@Value()注解 1.1 配置数据 如:在prope ...
- EularProject 48: 利用数组求和
Problem 48 The series, 11+22+33+...+1010=10405071317. Find the last ten digits of the series, 11+22+ ...
- Python: PS 滤镜特效 -- Marble Filter
本文用 Python 实现 PS 滤镜特效,Marble Filter, 这种滤镜使图像产生不规则的扭曲,看起来像某种玻璃条纹, 具体的代码如下: import numpy as np import ...
- POJ 2141 模拟
思路:字符串解密 啥都告诉你了 模拟就好 //By SiriusRen #include <cstdio> #include <cstring> using namespace ...
- KnockOut下的离开检测
<input type="text" class="form-control" data-bind="event:{ blur:$root.ch ...
- 负载均衡器&http正向代理
透明的负载均衡器&http正向代理 * master-workers架构,http正向代理由独立的dns请求以及缓冲进程 * 使用epoll(ET)模式,採用全异步方式(双缓存,实现双向同一 ...
- RelativeLayout-代码中成员控件width height
今天需要在代码中动态的设置一个textview的width跟height属性,记录下来. textview在xml中的布局如下 <RelativeLayout android:layout_wi ...
- 理性分析 C++(-O2) 和 JS 的性能差距
laptop: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz.. Test1: 最后一行:时间(ms) #pragma GCC optimize("O2& ...
- 洛谷 P3386 【模板】二分图匹配 Dinic版
题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...