Classification and Representation
Classification
To attempt classification, one method is to use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn't work well because classification is not actually a linear function.
The classification problem is just like the regression problem, except that the values we now want to predict take on only a small number of discrete values. For now, we will focus on the binary classification problem in which y can take on only two values, 0 and 1. (Most of what we say here will also generalize to the multiple-class case.) For instance, if we are trying to build a spam classifier for email, then
may be some features of a piece of email, and y may be 1 if it is a piece of spam mail, and 0 otherwise. Hence, y∈{0,1}. 0 is also called the negative class, and 1 the positive class, and they are sometimes also denoted by the symbols “-” and “+.” Given x(i), the corresponding
is also called the label for the training example.
Hypothesis Representation
We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given x. However, it is easy to construct examples where this method performs very poorly. Intuitively, it also doesn’t make sense for hθ(x) to take values larger than 1 or smaller than 0 when we know that y ∈ {0, 1}. To fix this, let’s change the form for our hypotheses hθ(x) to satisfy
. This is accomplished by plugging
into the Logistic Function.
Our new form uses the "Sigmoid Function," also called the "Logistic Function":

The following image shows us what the sigmoid function looks like:

The function g(z), shown here, maps any real number to the (0, 1) interval, making it useful for transforming an arbitrary-valued function into a function better suited for classification.
hθ(x) will give us the probability that our output is 1. For example, hθ(x)=0.7 gives us a probability of 70% that our output is 1. Our probability that our prediction is 0 is just the complement of our probability that it is 1 (e.g. if probability that it is 1 is 70%, then the probability that it is 0 is 30%).

Decision Boundary
In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

Remember.

So if our input to g is
, then that means:

From these statements we can now say:

The decision boundary is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.
Example:


Multiclass Classification: One-vs-all
Now we will approach the classification of data when we have more than two categories. Instead of y = {0,1} we will expand our definition so that y = {0,1...n}.
Since y = {0,1...n}, we divide our problem into n+1 (+1 because the index starts at 0) binary classification problems; in each one, we predict the probability that 'y' is a member of one of our classes.

The following image shows how one could classify 3 classes:We are basically choosing one class and then lumping all the others into a single second class. We do this repeatedly, applying binary logistic regression to each case, and then use the hypothesis that returned the highest value as our prediction.

To summarize:

Classification and Representation的更多相关文章
- 浅谈Logistic回归及过拟合
判断学习速率是否合适?每步都下降即可.这篇先不整理吧... 这节学习的是逻辑回归(Logistic Regression),也算进入了比较正统的机器学习算法.啥叫正统呢?我概念里面机器学习算法一般是这 ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- 《Machine Learning》系列学习笔记之第三周
第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
- Course Machine Learning Note
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...
- Survey of single-target visual tracking methods based on online learning 翻译
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...
- 《Learning Structured Representation for Text Classification via Reinforcement Learning》论文翻译.md
摘要 表征学习是自然语言处理中的一个基本问题.本文研究了如何学习文本分类的结构化表示.与大多数既不使用结构又依赖于预先指定结构的现有表示模型不同,我们提出了一种强化学习(RL)方法,通过自动覆盖优化结 ...
随机推荐
- 2048游戏分析、讨论与扩展 - Part I - 游戏分析与讨论
2048这个游戏从刚出開始就风靡整个世界. 本技术博客的目的是想对2048涉及到相关的全部问题进行仔细的分析与讨论,得到一些大家能够接受而且理解的结果. 在这基础上,扩展2048的游戏性,使其变得更好 ...
- Fragment-按返回键程序退出
今天在做fragment的时候,发现一个问题,当我的界面停留在fragment的时候,按物理返回键,这时候会推出整个应用.这当然不是我们期望的,我们期望按返回键以后,应用界面返回添加fragment之 ...
- Win8.1系统所有的路径都无法更改文件夹名称
平台:win8.1 问题:所有的路径,无论是桌面还是分区还是文件夹内,可以新建和删除文件夹,但不能给文件夹改名,提示“文件或文件夹不存在 ” 分析:安装了几次photoshop后莫名其妙出现这个问题, ...
- POJ 1654 Area 凸包面积
水题直接码... /********************* Template ************************/ #include <set> #include < ...
- Java Web学习总结(1)——JavaWeb开发入门
一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...
- SSO单点登录学习总结(1)——单点登录(SSO)原理解析
SSO的概念: 单点登录SSO(Single Sign-On)是身份管理中的一部分.SSO的一种较为通俗的定义是:SSO是指访问同一服务器不同应用中的受保护资源的同一用户,只需要登录一次,即通过一个应 ...
- 设计模式六大原则(三):依赖倒置原则(Dependence Inversion Principle)
依赖倒置原则(DIP)定义: 高层模块不应该依赖低层模块,二者都应该依赖其抽象:抽象不应该依赖细节:细节应该依赖抽象. 问题由来: 类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码 ...
- valueof(), intvalue(0 parseint() 这三个方法怎么用
valueOf(int i) 返回一个表示指定的 int 值的 Integer 实例.valueOf(String s) 返回保存指定的 String 的值的 Integer 对象.valueOf(S ...
- BZOJ——T2190: [SDOI2008]仪仗队
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3216 Solved: 2075[Submit][Status][Discuss] http://w ...
- Python中的文本(一)
本文主要记录和总结本人在阅读<Python标准库>一书,文本这一章节的学习和理解. 事实上在Python中,使用文本这种一些方法是特别经常使用的一件事.在一般的情况下,都会使用String ...