Buy or Build
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1348   Accepted: 533

Description

World Wide Networks (WWN) is a leading company that operates large telecommunication networks. WWN would like to setup a new network in Borduria, a nice country that recently managed to get rid of its military dictator Kurvi-Tasch
and which is now seeking for investments of international companies (for a complete description of Borduria, have a look to the following Tintin albums ``King Ottokar's Sceptre", ``The Calculus Affair" and ``Tintin and the Picaros"). You are requested to help
WWN todecide how to setup its network for a minimal total cost.

Problem

There are several local companies running small networks (called subnetworks in the following) that partially cover the n largest cities of Borduria. WWN would like to setup a network that connects all n cities. To achieve this, it can either build edges between
cities from scratch or it can buy one or several subnetworks from local companies. You are requested to help WWN to decide how to setup its network for a minimal total cost.

  • All n cities are located by their two-dimensional Cartesian coordinates.
  • There are q existing subnetworks. If q>=1 then each subnetwork c ( 1<=c<=q ) is defined by a set of interconnected cities (the exact shape of a subnetwork is not relevant to our problem).
  • A subnetwork c can be bought for a total cost wc and it cannot be split (i.e., the network cannot be fractioned).
  • To connect two cities that are not connected through the subnetworks bought, WWN has to build an edge whose cost is exactly the square of the Euclidean distance between the cities.

You have to decide which existing networks you buy and which edges you setup so that the total cost is minimal. Note that the number of existing networks is always very small (typically smaller than 8).


A 115 Cities Instance

Consider a 115 cities instance of the problem with 4 subnetworks (the 4 first graphs in Figure 1). As mentioned earlier the exact shape of a subnetwork is not relevant still, to keep figures easy to read, we have assumed an arbitrary tree like structure for
each subnetworks. The bottom network in Figure 1 corresponds to the solution in which the first and the third networks have been bought. Thin edges correspond to edges build from scratch while thick edges are those from one of the initial networks.

Input

The first line contains the number n of cities in the country ( 1<=n<=1000 ) followed by the number q of existing subnetworks ( 0<=q<=8 ). Cities are identified by a unique integer value ranging from 1 to n . The first line is
followed by q lines (one per subnetwork), all of them following the same pattern: The first integer is the number of cities in the subnetwork. The second integer is the the cost of the subnetwork (not greater than 2 x 106 ). The remaining integers
on the line (as many as the number of cities in the subnetwork) are the identifiers of the cities in the subnetwork. The last part of the file contains n lines that provide the coordinates of the cities (city 1 on the first line, city 2 on the second one,
etc). Each line is made of 2 integer values (ranging from 0 to 3000) corresponding to the integer coordinates of the city.

Output

Your program has to write the optimal total cost to interconnect all cities.

Sample Input

7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4

Sample Output

17

Hint

Sample Explanation: The above instance is shown in Figure 2. An optimal solution is described in Figure 3 (thick edges come from an existing network while thin edges have been setup from scratch).








Figure 3: An optimal solution of the 7 City instance in which which the first and second existing networkshave been bought while two extra edges (1, 5) and (2, 4)




Source

题意:n个城市,告诉每一个城市的坐标,还有q个联通块,如今要把这n个城市连起来,能够购买联通块(每一个有一定的费用),或者新建一条边(费用为点之间的距离的平方)。问最小费用是多少。

思路:q非常小。二进制枚举选哪些块。每次kruskal一遍,求最小值。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; const int maxn = 1005;
const int MAXN = 500500; struct Node
{
int x,y;
}node[maxn]; struct Edge
{
int u,v,len;
bool operator<(const Edge &a)const
{
return len<a.len;
}
}edge[MAXN]; int father[maxn],cost[10];
int n,q,num;
vector<int>g[10]; void init()
{
for (int i=0;i<=n;i++)
father[i]=i;
} void addedge(int u,int v)
{
edge[num].u=u;
edge[num].v=v;
edge[num++].len=(node[u].x-node[v].x)*(node[u].x-node[v].x)+(node[u].y-node[v].y)*(node[u].y-node[v].y);
} int find_father(int x)
{
if (x!=father[x])
father[x]=find_father(father[x]);
return father[x];
} bool Union(int a,int b)
{
int fa=find_father(a);
int fb=find_father(b);
if (fa==fb) return false;
father[fa]=fb;
return true;
} int Kruskal()
{
int ans=0;
int cnt=0;
for (int i=0;i<num;i++)
{
if (Union(edge[i].u,edge[i].v))
{
ans+=edge[i].len;
cnt++;
}
if (cnt==n-1) break;
}
return ans;
} void solve()
{
init();
int ans=Kruskal();
for (int i=0;i<(1<<q);i++)
{
init();
int all=0;
for (int j=0;j<q;j++)
{
if (!((i>>j)&1)) continue;
all+=cost[j];
for (int k=1;k<g[j].size();k++)
Union(g[j][k],g[j][0]);
}
ans=min(ans,all+Kruskal());
}
pf("%d\n",ans);
} int main()
{
int i,j,t,number,x;
// sf(t);
// while (t--)
{
sff(n,q);
num=0;
for (i=0;i<q;i++)
{
g[i].clear();
sff(number,cost[i]);
for (j=0;j<number;j++)
{
sf(x);
g[i].push_back(x);
}
}
for (i=1;i<=n;i++)
sff(node[i].x,node[i].y);
for (i=1;i<=n;i++)
for (j=i+1;j<=n;j++)
addedge(i,j);
sort(edge,edge+num);
solve();
// if (t) puts("");
}
return 0;
}
/*
1 7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4
*/

Buy or Build (poj 2784 最小生成树)的更多相关文章

  1. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  2. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  3. 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)

    题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...

  4. POJ(2784)Buy or Build

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1369   Accepted: 542 Descr ...

  5. Poj(2784),二进制枚举最小生成树

    题目链接:http://poj.org/problem?id=2784 Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  6. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  7. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  8. 【UVA 1151】 Buy or Build (有某些特别的东东的最小生成树)

    [题意] 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q<=8)个套餐 ...

  9. 【最小生成树+子集枚举】Uva1151 Buy or Build

    Description 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q< ...

随机推荐

  1. JQuery:常用知识点总结

    jQuery本质上就是一个外部的js文件(jQuery.js),该文件中封装了很多js代码,实现了很多功能.并且jQuery有非常丰富的插件,大多数功能都有相应的插件解决方案.jQuery的宗旨是wr ...

  2. MyBatis ((一对多和多对一配置)实现持久化操作 之二)

    注: 此文中的实体类还是沿用上一章的Emp和Dept两个类 还是老样子,不细说 直接上代码 01.在emp.xml中  配置和Dept的多对一的相关信息 <?xml version=" ...

  3. 使用淘宝ip地址库开放接口在网站上显示当前用户所在的城市省份网络(完整代码)

    查看效果:每天进步网  在网站的页脚 <p>欢迎来自 <?php function GetIpCity() {$realip = '';$unknown = 'unknown';if ...

  4. android Activity实现底部滑动弹出窗口及源码下载地址

    在做微信.微博.qq等分享时,一般是点击分享按钮后会从底部弹出滑动窗口,然后选择要分享的社交平台进行分享.今日头条.腾讯新闻等内容App的评论也是从底部滑动弹出输入窗口,进行评论输入的.本篇文章就讲讲 ...

  5. 02--SQLite操作一步到位

    SQLite数据库(一):基本操作 SQLite 是一个开源的嵌入式关系数据库,实现自包容.零配置.支持事务的SQL数据库引擎. 其特点是高度便携.使用方便.结构紧凑.高效.可靠. 与其他数据库管理系 ...

  6. c指针之内存释放

    // 1.正常使用包含指针的结构体 // 2.正常使用元素类型为指针的vector #include<string.h> #include<stdio.h> #include& ...

  7. 解决hash冲突的三个方法-考虑获取

    哈希表值的获取要考虑全部可能空间. 在链地址法中,可能空间就是具有相同hash值的链表.   目录 开放定址法 线性探测再散列 二次探测再散列 伪随机探测再散列 再哈希法 链地址法 建立公共溢出区 优 ...

  8. CAD保存高版本的dwg(com接口)

    主要用到函数说明: MxDrawXCustomFunction::Mx_SaveDwgEx 保存DWG文件,可以设置保存的文件版本号和密码,详细说明如下: 参数 说明 IN CString sFile ...

  9. 如何使用 Python 创建一名可操控的角色玩家

    在 这个系列的第一篇文章 中,我解释了如何使用 Python 创建一个简单的基于文本的骰子游戏.在第二部分中,我向你们展示了如何从头开始构建游戏,即从 创建游戏的环境 开始.但是每个游戏都需要一名玩家 ...

  10. 解决hibernate删除时的异常 deleted object would be re-saved by cascade (remove deleted object from associa

    今天在做项目时,需要删除一个对象,由于关联关系是一对多和多对一的关系,于是在代码中需要删除多的一方的对象时出现了 deleted object would be re-saved by cascade ...