我们知道,在第一次海量数据批量入库时,我们会选择使用BulkLoad的方式。

简单介绍一下BulkLoad原理方式:(1)通过MapReduce的方式,在Map或者Reduce端将输出格式化为HBase的底层存储文件HFile。(2)调用BulkLoad将第一个Job生成的HFile导入到相应的HBase表中。

ps:请注意(1)HFile方式是全部的载入方案里面是最快的,前提是:数据必须第一个导入,表示空的!假设表中已经有数据,HFile再次导入的时候,HBase的表会触发split切割操作。(2)终于输出结果,不管是Map还是Reduce,输出建议仅仅使用<ImmutableBytesWritable, KeyValue>。

如今我们開始正题:BulkLoad固然是写入HBase最快的方式,可是,假设我们在做业务分析的时候,而数据又已经在HBase的时候,我们採用普通的针对HBase的方式,例如以下demo所看到的:

import com.yeepay.bigdata.bulkload.TableCreator;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.log4j.Logger; import java.io.IOException; public class HBaseMapReduceDemo { static Logger LOG = Logger.getLogger(HBaseMapReduceDemo.class); static class Mapper1 extends TableMapper<ImmutableBytesWritable, ImmutableBytesWritable> { @Override
public void map(ImmutableBytesWritable row, Result values, Context context) throws IOException { try {
// context.write(key, value);
} catch (Exception e) {
LOG.error(e);
}
}
} public static class Reducer1 extends TableReducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable> { public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException {
try { Put put = new Put(key.get());
// put.add();
context.write(key, put); } catch (Exception e) {
LOG.error(e);
return ;
} // catch
} // reduce function
} // reduce class public static void main(String[] args) throws Exception { HBaseConfiguration conf = new HBaseConfiguration();
conf.set("hbase.zookeeper.quorum", "yp-name02,yp-name01,yp-data01");
conf.set("hbase.zookeeper.property.clientPort", "2181");
// conf.set(TableInputFormat.INPUT_TABLE,"access_logs");
Job job = new Job(conf, "HBaseMapReduceDemo");
job.setJarByClass(HBaseMapReduceDemo.class);
// job.setNumReduceTasks(2);
Scan scan = new Scan();
scan.setCaching(2500);
scan.setCacheBlocks(false); TableMapReduceUtil.initTableMapperJob("srcHBaseTableName", scan, Mapper1.class, ImmutableBytesWritable.class, ImmutableBytesWritable.class, job);
// TableCreator.createTable(20, true, "OP_SUM");
TableMapReduceUtil.initTableReducerJob("destHBasetableName", Reducer1.class, job);
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

这个时候在对海量数据的插入过程中,会放生Spliter,写入速度很的,及其的慢。可是此种情况适合,对已有的HBase表进行改动时候的使用。

针对例如以下情况HBase -> MapReduce 分析 -> 新表,我们採用 (HBase -> MapReduce 分析 -> bulkload -> 新表)方式。

demo例如以下:

Mapper例如以下:

public class MyReducer extends Reducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable, KeyValue> {

    static Logger LOG = Logger.getLogger(MyReducer.class);

    public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException {
try {
context.write(key, kv);
} catch (Exception e) {
LOG.error(e);
return;
} // catch
} // reduce function }

Reducer例如以下:

public class MyReducer extends Reducer<ImmutableBytesWritable, ImmutableBytesWritable, ImmutableBytesWritable, KeyValue> {

    static Logger LOG = Logger.getLogger(MyReducer.class);

    public void reduce(ImmutableBytesWritable key, Iterable<ImmutableBytesWritable> values, Context context) throws IOException, InterruptedException {
try {
context.write(key, kv);
} catch (Exception e) {
LOG.error(e);
return;
} // catch
} // reduce function }

Job and BulkLoad:

public abstract class JobBulkLoad {

    public void run(String[] args) throws Exception {
try {
if (args.length < 1) {
System.err.println("please set input dir");
System.exit(-1);
return;
} String srcTableName = args[0];
String destTableName = args[1];
TableCreator.createTable(20, true, destTableName); // 设置 HBase 參数
HBaseConfiguration conf = new HBaseConfiguration();
conf.set("hbase.zookeeper.quorum", "yp-name02,yp-name01,yp-data01");
// conf.set("hbase.zookeeper.quorum", "nn01, nn02, dn01");
conf.set("hbase.zookeeper.property.clientPort", "2181"); // 设置 Job 參数
Job job = new Job(conf, "hbase2hbase-bulkload");
job.setJarByClass(JobBulkLoad.class);
HTable htable = new HTable(conf, destTableName); // 依据region的数量来决定reduce的数量以及每一个reduce覆盖的rowkey范围 // ----------------------------------------------------------------------------------------
Scan scan = new Scan();
scan.setCaching(2500);
scan.setCacheBlocks(false);
TableMapReduceUtil.initTableMapperJob(srcTableName, scan, MyMapper.class, ImmutableBytesWritable.class, ImmutableBytesWritable.class, job);
// TableMapReduceUtil.initTableReducerJob(destTableName, Common_Reducer.class, job); job.setReducerClass(MyReducer.class);
Date now = new Date();
Path output = new Path("/output/" + destTableName + "/" + now.getTime());
System.out.println("/output/" + destTableName + "/" + now.getTime()); HFileOutputFormat.configureIncrementalLoad(job, htable);
FileOutputFormat.setOutputPath(job, output);
HFileOutputFormat.configureIncrementalLoad(job, htable);
job.waitForCompletion(true); //----- 运行BulkLoad -------------------------------------------------------------------------------
HdfsUtil.chmod(conf, output.toString());
HdfsUtil.chmod(conf, output + "/" + YeepayConstant.COMMON_FAMILY);
htable = new HTable(conf, destTableName);
new LoadIncrementalHFiles(conf).doBulkLoad(output, htable);
System.out.println("HFile data load success!");
} catch (Throwable t) {
throw new RuntimeException(t);
}
} }

对于HBase的MapReduce性能提升方案之BulkLoad的更多相关文章

  1. mapreduce性能提升2

    mapreduce性能提升2mapreduce性能提升2mapreduce性能提升2

  2. ElasticStack系列之十七 & 大文本搜索性能提升方案

    1. 什么是大文本?具体是什么? 首先需要理解,ElasticSearch 建立索引完成全文检索的前提是将待检索的信息导入到 ElasticSearch 中.而有的信息对应的正文内容会非常的打,可能达 ...

  3. [转]XCache 3.0.0 发布,PHP 性能提升方案

    From : http://www.oschina.net/news/34304/xcache-3-0-0 XCache 3.0.0 发布,该版本除了 bug 修复,对 XCache 管理页面做了很多 ...

  4. JS执行效率与性能提升方案

    如果是追加字符串,最好使用s+=anotherStr操作,而不是要使用s=s+anotherStr.如果要连接多个字符串,应该少使用+=,如 s+=a;s+=b;s+=c;应该写成s+=a + b + ...

  5. VNF网络性能提升解决方案及实践

    VNF网络性能提升解决方案及实践 2016年7月 作者:    王智民 贡献者:     创建时间:    2016-7-20 稳定程度:    初稿 修改历史 版本 日期 修订人 说明 1.0 20 ...

  6. 我是如何将一个老系统的kafka消费者服务的性能提升近百倍的

    ☞☞☞ 我是如何将一个老系统的kafka消费者服务的性能提升近百倍的 ☜☜☜ ○○○○○○○○○○○○○○○ 大家好,又见面了~ kafka作为一种高吞吐量的分布式发布订阅消息系统,在业务系统中被广泛 ...

  7. Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结

    转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...

  8. Atitit.h5 web webview性能提升解决方案-----fileStrore缓存离线存储+http方案

    Atitit.h5 web webview性能提升解决方案-----fileStrore缓存离线存储+http方案 1. 业务场景 android+webview h5 css背景图性能提升1 2. ...

  9. 【转载】HBase 数据库检索性能优化策略

    转自:http://www.ibm.com/developerworks/cn/java/j-lo-HBase/index.html 高性能 HBase 数据库 本文首先介绍了 HBase 数据库基本 ...

随机推荐

  1. Laravel5.1学习笔记13 系统架构5 Contract

    Contract 简介 为什么要用 Contract? Contract 参考 如何使用 Contract 简介 Laravel 中的 Contract 是一组定义了框架核心服务的接口.例如,Illu ...

  2. Android 将图片网址url转化为bitmap

    public Bitmap returnBitMap(final String url){ new Thread(new Runnable() { @Override public void run( ...

  3. webstorm进行VisualSVN配置及上传项目到项目库

    以前建站一直都是自己一个人,最近要做一个比较大的网站,寻思着利用svn在整个开发过程中会比较快,于是摸索着配置了一下. 首先,下载VisualSVN这个软件,官网链接 https://www.visu ...

  4. JS——AJAX

    向服务器发送请求如需将请求发送到服务器,我们使用 XMLHttpRequest 对象的 open() 和 send() 方法:Open方法了有两种请求方式——get和post 与 POST 相比,GE ...

  5. VC++ 遍历文件夹

    }; strcpy_s(szFind, MAX_PATH, m_szDir); strcat_s(szFind, "\\*.*"); WIN32_FIND_DATA wfd; HA ...

  6. Codeforces_738B

    B. Spotlights time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  7. iview Table表格单选框互斥

    表格中添加单选框,并且互斥 首先带data中定义   currentid : 0 :表示默认不选中 { title: "名称", key: "name", re ...

  8. LDAP个人理解

    在新的公司办公,所有的后台系统或文档系统都公用一个LDAP账号. 接触到这个新名词,就查了一下,谈谈个人理解: LDAP是个协议, 简单地说,可以把LDAP服务理解为一套存放你账户密码的数据库系统.市 ...

  9. LINQ简记(3):子句

    LINQ查询表达式的子句如select,where,from等都是比较简单的子句,相信各位多练习练习,再结合MSDN的例子,基本上是可以理解的,因此,本文只挑几个有代表性的,以及有些难理解的子句来简述 ...

  10. C#学习笔记_09_构造方法/函数

    09_构造方法/函数 代码案例 作用:构造函数主要是用来创建对象时为对象赋初值来初始化对象:总与new运算符一起使用在创建对象的语句中,例如A a=new A(); 特点: 构造函数具有和类一样的名称 ...