POJ 3904
第一道莫比乌斯反演的题。
建议参看http://www.isnowfy.com/mobius-inversion/
摘其中部分
证明的话感觉写起来会比较诡异,大家意会吧
说一下这个经典题目:令R(M,N)=1≤x≤M,1≤y≤N中 gcd(x,y)=1 的个数
我们说G(z)表示gcd(x,y)是z的倍数的个数(以后都省略1≤x≤M,1≤y≤N的前提),换句话说z|gcd(x,y)的个数,那么很显然G(z)=⌊M/z⌋∗⌊N/z⌋,令F(z)表示gcd(x,y)=z的个数,
所以G(z)=∑(F(z)+F(2∗z)+F(3∗z)...),于是我们得到F(z)=∑(G(z)∗μ(z)+G(2∗z)∗μ(2∗z)...),从而得到了我们最终的答案ans=∑z≥1⌊M/z⌋∗⌊N/z⌋∗μ(z)
这里,只需要把z=1,通过求F(z)即可。
上面之所以成立,因为莫比乌斯的另一种形式(我未找到,但确实成立)
f(d) = ∑ g(n) (n % d == 0)
g(d) = ∑ mu[n / d] * f(n) (n %d == 0)
好像目前遇到的都是经典题目的类型了。。。
给出求莫比乌斯函数的代码:
void initial(){
int i,j;
for(i=1;i<N;i++) mobi[i]=1,vis[i]=false;
for(i=2;i<N;i++) {
if(vis[i]) continue;
for(j=i;j<N;j+=i){
vis[j]=true;
if((j/i)%i==0){
mobi[j]=0; continue;
}
mobi[j]=-mobi[j];
}
}
}
POJ 代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 10005
#define LL __int64
using namespace std; int ID[N];
int mobi[N],cnt[N];
bool vis[N];
LL myc[N]; void initial(){
int i,j;
for(i=1;i<N;i++) mobi[i]=1,vis[i]=false;
for(i=2;i<N;i++) {
if(vis[i]) continue;
for(j=i;j<N;j+=i){
vis[j]=true;
if((j/i)%i==0){
mobi[j]=0; continue;
}
mobi[j]=-mobi[j];
}
}
myc[0]=myc[1]=myc[2]=myc[3]=0;
myc[4]=1;
for(int i=5;i<N;i++)
myc[i]=myc[i-1]*(LL)i/(LL)(i-4); //这里求的其实是组合数
} int main(){
int n; int mx,tmp;
initial();
while(scanf("%d",&n)!=EOF){
mx=-1;
memset(ID,0,sizeof(ID));
for(int i=0;i<n;i++){
scanf("%d",&tmp);
ID[tmp]++;
mx=max(mx,tmp);
}
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=N;i++){
for(int k=i;k<N;k+=i){
if(ID[k])
cnt[i]+=ID[k];
}
}
LL ans=0;
for(int i=1;i<=mx;i++){
ans=ans+(LL)mobi[i]*myc[cnt[i]];
}
printf("%I64d\n",ans);
}
return 0;
}
POJ 3904的更多相关文章
- POJ 3904 Sky Code (容斥原理)
B - Sky Code Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- poj 3904(莫比乌斯反演)
POJ 3904 题意: 从n个数中选择4个数使他们的GCD = 1,求总共有多少种方法 Sample Input 4 2 3 4 5 4 2 4 6 8 7 2 3 4 5 7 6 8 Sample ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- 【POJ 3904】 Sky Code
[题目链接] http://poj.org/problem?id=3904 [算法] 问题可以转化为求总的四元组个数 - 公约数不为1的四元组个数 总的四元组个数为C(n,4),公约数不为1的四元组个 ...
- [poj 3904] sky code 解题报告(组合计算+容斥原理)
题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...
- POJ 3904 Sky Code
题意:给定n个数ai, ai <= 10000, n <= 10000, 从中选出4个数要求gcd为1,这样的集合有多少个? 分析:首先总共集合nCr(n, 4) = n*(n-1)*(n ...
- POJ 3904(容斥原理)
Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1750 Accepted: 545 Descripti ...
- POJ 3904 (莫比乌斯反演)
Stancu likes space travels but he is a poor software developer and will never be able to buy his own ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
随机推荐
- 关于excel导入、导出(POI)
当前B/S模式已成为应用开发的主流,而在企业办公系统中,常常有客户这样子要求:你要把我们的报表直接用Excel打开(电信系统.银行系统).或者是:我们已经习惯用Excel打印.这样在我们实际的开发中, ...
- Spring自带字符编码过滤器
http://blog.csdn.net/youngage/article/details/51356821 http://blog.csdn.net/daelly/article/details/5 ...
- Android获取图片实际大小兼容平板电脑
项目中有个图片在平板电脑中显示特别小的原因.一直苦于没找到原因,也没有平板电脑測试,今天找了个改动分辨率的,编写相关方法最终处理了,记录下比較: 好让以后不造轮子. 主要是获取文章相关图片显示问题.直 ...
- Android error--No implementation found for native Lcomd
在利用NDK编译Cpp执行时,出现了No implementation found for native Lcom等错误,调试好久,才发现 XXX.h和XXX.cpp.在XXX.cpp里#includ ...
- 具体图解 Flume介绍、安装配置
写在前面一: 本文总结"Hadoop生态系统"中的当中一员--Apache Flume 写在前面二: 所用软件说明: 一.什么是Apache Flume 官网:Flume is a ...
- STL_算法_依据第n个元素排序(nth_element)
C++ Primer 学习中... 简单记录下我的学习过程 (代码为主) //全部容器适用 nth_element(b,n,e) nth_element(b,n,e,p) 对照:partition() ...
- TCO 2015 2D
250分题:给一段仅仅有'0','1'构成的字符串,然后给出串上平衡点的定义:在串上找到某个点(位置是p),这个点将串分成左右两部分(能够为空),左右分别计算字符的值的和,假设左边有字符是'1',那么 ...
- 2015.03.16,外语,读书笔记-《Word Power Made Easy》 00 “如何最大限度的利用本书”学习笔记
备注:蓝色表明是自己学习或笔记的部分,红色表明特别的地方,例如自己不理解或需要重点关注的地方.加粗单词表明是要加入生词库学习的词语.单词后面括号中的蓝色部分,是单词的解释和音标. 1.this is ...
- gridview in webform
How to: Enable Default Paging in the GridView Web Server Control https://msdn.microsoft.com/en-us/li ...
- linux下解决非本机访问出现的提示
安装完毕之后发现无法用IP访问,出现以下提示 Access forbidden! New XAMPP security concept: Access to the requested directo ...