掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系。由于作者能力有限,难免有疏漏,恳请读者批评指正。 

  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念。而thread,block,grid,warp是软件上的(CUDA)概念。

从硬件看


  • SP:最基本的处理单元,streaming processor,也称为CUDA core。最后具体的指令和任务都是在SP上处理的。GPU进行并行计算,也就是很多个SP同时做处理。
  • SM:多个SP加上其他的一些资源组成一个streaming multiprocessor。也叫GPU大核,其他资源如:warp scheduler,register,shared memory等。SM可以看做GPU的心脏(对比CPU核心),register和shared memory是SM的稀缺资源。CUDA将这些资源分配给所有驻留在SM中的threads。因此,这些有限的资源就使每个SM中active warps有非常严格的限制,也就限制了并行能力。

  需要指出,每个SM包含的SP数量依据GPU架构而不同,Fermi架构GF100是32个,GF10X是48个,Kepler架构都是192个,Maxwell都是128个。相同架构的GPU包含的SM数量则根据GPU的中高低端来定。下图给出Nvidia
GTX980 的一个SM示意图,图中每个绿色框框表示一个SP。注意,在Maxwell架构中,Nvidia已经把SM改叫SMM。下图表示的仅仅是一个SMM,一个GPU可以有多个SM(比如16个),最终一个GPU可能包含有上千个SP。这么多核心“同时运行”,速度可想而知,这个引号只是想表明实际上,软件逻辑上是所有SP是并行的,但是物理上并不是所有SP都能同时执行计算,因为有些会处于挂起,就绪等其他状态,这有关GPU的线程调度,以后再写了。 
原图

从软件看


  thread,block,grid,warp是CUDA编程上的概念,以方便程序员软件设计,组织线程,同样的我们给出一个示意图来表示。

  • thread:一个CUDA的并行程序会被以许多个threads来执行。
  • block:数个threads会被群组成一个block,同一个block中的threads可以同步,也可以通过shared memory通信。
  • grid:多个blocks则会再构成grid。
  • warp:GPU执行程序时的调度单位,目前cuda的warp的大小为32,同在一个warp的线程,以不同数据资源执行相同的指令,这就是所谓 SIMT。

对应关系


  从软件上看,SM更像一个独立的CPU core。SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的。以Fermi架构为例,其包含以下主要组成部分:

  • CUDA cores
  • Shared Memory/L1Cache
  • Register File
  • Load/Store Units
  • Special Function Units
  • Warp Scheduler

  GPU中每个sm都设计成支持数以百计的线程并行执行,并且每个GPU都包含了很多的SM,所以GPU支持成百上千的线程并行执行。当一个kernel启动后,thread会被分配到这些SM中执行。大量的thread可能会被分配到不同的SM,同一个block中的threads必然在同一个SM中并行(SIMT)执行。每个thread拥有它自己的程序计数器和状态寄存器,并且用该线程自己的数据执行指令,这就是所谓的Single Instruction Multiple Thread。 

  一个SP可以执行一个thread,但是实际上并不是所有的thread能够在同一时刻执行。Nvidia把32个threads组成一个warp,warp是调度和运行的基本单元。warp中所有threads并行的执行相同的指令。一个warp需要占用一个SM运行,多个warps需要轮流进入SM。由SM的硬件warp scheduler负责调度。目前每个warp包含32个threads(Nvidia保留修改数量的权利)。所以,一个GPU上resident thread最多只有
SM*warp个。 

  

SIMT和SIMD


  CUDA是一种典型的SIMT架构(单指令多线程架构),SIMT和SIMD(Single Instruction, Multiple Data)类似,SIMT应该算是SIMD的升级版,更灵活,但效率略低,SIMT是NVIDIA提出的GPU新概念。二者都通过将同样的指令广播给多个执行官单元来实现并行。一个主要的不同就是,SIMD要求所有的vector element在一个统一的同步组里同步的执行,而SIMT允许线程们在一个warp中独立的执行。SIMT有三个SIMD没有的主要特征:

  • 每个thread拥有自己的instruction address counter
  • 每个thread拥有自己的状态寄存器
  • 每个thread可以有自己独立的执行路径

  更细节的差异可以看这里。 

  前面已经说block是软件概念,一个block只会由一个sm调度,程序员在开发时,通过设定block的属性,**“告诉”**GPU硬件,我有多少个线程,线程怎么组织。而具体怎么调度由sm的warps scheduler负责,block一旦被分配好SM,该block就会一直驻留在该SM中,直到执行结束。一个SM可以同时拥有多个blocks,但需要序列执行。下图显示了软件硬件方面的术语对应关系: 

  

  需要注意的是,大部分threads只是逻辑上并行,并不是所有的thread可以在物理上同时执行。例如,遇到分支语句(if else,while,for等)时,各个thread的执行条件不一样必然产生分支执行,这就导致同一个block中的线程可能会有不同步调。另外,并行thread之间的共享数据会导致竞态:多个线程请求同一个数据会导致未定义行为。CUDA提供了cudaThreadSynchronize()来同步同一个block的thread以保证在进行下一步处理之前,所有thread都到达某个时间点。 

  同一个warp中的thread可以以任意顺序执行,active warps被sm资源限制。当一个warp空闲时,SM就可以调度驻留在该SM中另一个可用warp。在并发的warp之间切换是没什么消耗的,因为硬件资源早就被分配到所有thread和block,所以该新调度的warp的状态已经存储在SM中了。不同于CPU,CPU切换线程需要保存/读取线程上下文(register内容),这是非常耗时的,而GPU为每个threads提供物理register,无需保存/读取上下文。 

  

总结


 掌握部分硬件知识,有助于CUDA性能提升

【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起的更多相关文章

  1. CUDA开发 - CUDA 版本

    "CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: ...

  2. 【并行计算-CUDA开发】CUDA ---- Warp解析

    Warp 逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质. Warps and Thread Blo ...

  3. 【并行计算-CUDA开发】从零开始学习OpenCL开发(一)架构

    多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的 ...

  4. 《CUDA并行程序设计:GPU编程指南》

    <CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with ...

  5. 【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结

    2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性 ...

  6. 【并行计算-CUDA开发】OpenACC与OpenHMPP

    在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上 ...

  7. 【并行计算-CUDA开发】 NVIDIA Jetson TX1

    概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...

  8. 【并行计算与CUDA开发】英伟达硬件加速编解码

    硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenC ...

  9. 【并行计算-CUDA开发】CUDA线程、线程块、线程束、流多处理器、流处理器、网格概念的深入理解

    GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最 ...

随机推荐

  1. Luogu P4141 消失之物 背包 分治

    题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, ...

  2. 部分易错JS知识点整理(缓慢填坑)

    主要还是各地搜刮来的,本人对于这方面的总结还是8彳亍,给各位大佬磕头了砰砰砰 1. 2.JS闭包和匿名对象以及作用域 js在执行之前,会将所有带var和function的进行提前定义和声明.(带var ...

  3. whatis

    whatis 查看命令的说明文档位置及说明 是从数据库中取查找 手动更新数据库 并不是每个命令都有,

  4. 近期将要学习的内容(flag)

    块状链表 左偏树 最大流,最小割 费用流 数位DP 计算几何 主席树 树套树(弃疗) 斜率优化 manacher kmp,exkmp 树链剖分 splay树(只看了理论) Trie树 线段树操作及应用 ...

  5. 19.顺时针打印矩阵 Java

    题目描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数 ...

  6. linux下查看tomcat的日志

    工作期间有碰到服务器日志相关的,需要看tomcat运行日志,简单搜了下,摘为随笔,以供参考 一种是利用docker查看 1.使用dockerdocker logs -f -t --since=&quo ...

  7. LeetCode 44. 通配符匹配(Wildcard Matching)

    题目描述 给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配. '?' 可以匹配任何单个字符. '*' 可以匹配任意字符串(包括空字符串). 两个字符串完 ...

  8. How to use reminder feature of the outlook

    https://support.office.com/en-us/article/set-or-remove-reminders-7a992377-ca93-4ddd-a711-851ef359792 ...

  9. Docker 数据管理(Volumes)

    Docker 容器产生的数据在可写层,如果不通过 docker commit 生成新的镜像,使得数据成为镜像的一部分保存下来,那么当容器删除后,数据自然也就没有了. Docker 提供了三种数据 Mo ...

  10. vacode查看已安装的插件