Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower
time limit per test
4.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power w**k then value of power of a new tower will be {w**k}p.
Rocks are added from the last to the first. That is for sequence w1, ..., w**m value of power will be
After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.
Input
First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).
Second line of input contains n integers w**k (1 ≤ w**k ≤ 109) which is the power of rocks that priests have.
Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.
k**th of next q lines contains two integers l**k and r**k (1 ≤ l**k ≤ r**k ≤ n).
Output
Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks l**k, l**k + 1, ..., r**k.
Example
input
Copy
6 10000000001 2 2 3 3 381 11 62 22 32 44 44 54 6
output
Copy
1124256327597484987
Note
327 = 7625597484987
思路:
因为euler( euler(x) ) <= x/2 所以在log(x)次内欧拉函数值就会降为1,并且一直为1.而任何数对1取模的答案都是0,所以我们可以遇见模数为1时就可以结束迭代,
因此每次询问最多迭代log(m)次,每一次迭代只需要一个快速幂的时间复杂度,也是log(m)
因此对于每一个询问综合的时间复杂度是O(log(m)^2)
注意,在指数循环节中快速幂时,需要在ans>=mod时,取模后再加上mod,以此才满足欧拉降幂定理。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll mod(ll x, ll m)
{
return x >= m ? x % m + m : x;
}
ll powmod(ll a, ll b, ll MOD)
{
ll ans = 1;
while (b)
{
if (b % 2)
ans = mod(ans * a, MOD);
// ans = ans * a % MOD;
// a = a * a % MOD;
a = mod(a * a, MOD);
b /= 2;
}
return ans;
}
ll m;
int n;
int q;
ll a[maxn];
map<ll, ll> vis;
ll euler(ll n) { //log(n)时间内求一个数的欧拉值
if (vis.count(n))
{
return vis[n];
}
ll ans = n;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans / n;
vis[n] = ans;
return ans;
}
ll solve(int l, int r, ll m)
{
if (l == r || m == 1)
return mod(a[r], m);
return powmod(a[l], solve(l + 1, r, euler(m)), m);
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
// gbtb;
// cin >> n >> m;
scanf("%d%lld", &n, &m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
// cin >> a[i];
}
// cin >> q;
scanf("%d", &q);
int l, r;
while (q--)
{
scanf("%d %d", &l, &r);
printf("%lld\n", solve(l, r, m) % m);
// cin >> l >> r;
// cout << solve(l, r, m) % m << endl;
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Codeforces Round #454 D. Power Tower (广义欧拉降幂)的更多相关文章
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Power Tower(广义欧拉降幂)
题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...
- ACM-数论-广义欧拉降幂
https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...
- 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759
广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...
- CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)
Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)
In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...
- BZOJ 3884——欧拉降幂和广义欧拉降幂
理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
随机推荐
- docker容器内存和CPU使用限制
docker容器内存和CPU使用限制 示例如下 sudo docker run --name seckill0 -p 8080:8080 -m 1024M --cpus=0.2 -d seckill: ...
- Shell脚本无限调用
#! /bin/bash # this shell can run endlessfully echo "i love you ! " sh ./run 通过echo来显示了无限调 ...
- 华三F100系列防火墙 、华为USG6300系列防火 GRE 隧道配置
GRE概述: 通用路由封装(GRE: Generic Routing Encapsulation)是通用路由封装协议,可以对某些网络层协议的数据报进行封装,使这些被封装的数据报能够在IPV4网络中传输 ...
- Cassandra的架构
第5章 Cassandra 的架构 5.1 system keyspace Cassandra有一个称为system的内部keyspace,用于存储关于集群的元数据.包括:节点令牌,集群名,用于支持动 ...
- vue工程中,如何查询用户访问的地理位置 + vue中的jsonp
有一个需求,就是当用户访问你们公司的网站时,需要查到这位用户的地理位置(通过电脑ip来访问) 试了很多方法,感觉使用腾讯的位置服务api最好,返回的信息最全,包括经纬度,国家城市地区等.而其他绝大多数 ...
- poj3714 Raid(分治求平面最近点对)
题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...
- (模板)luoguP3806(树上点分治模板题)
点分治的写法1: 题目链接:https://www.luogu.org/problem/P3806 题意:给出一颗带边权的树,结点数n<=1e4,每条边有权值<=1e4,有m组询问(m&l ...
- Linux:IFS分隔符的使用
IFS分隔符的使用 data="name, gender,rollno,location" 我们可以使用IFS读取变量中的每一个条目. oldIFS=$IFS IFS=, #IFS ...
- 什么是时序时空数据库TSDB
时序时空数据库(Time Series & Spatial Temporal Database,简称 TSDB)是一种高性能.低成本.稳定可靠的在线时序时空数据库服务,提供高效读写.高压缩比存 ...
- 【LOJ】#3046. 「ZJOI2019」语言
LOJ#3046. 「ZJOI2019」语言 先orz zsy吧 有一个\(n\log^3n\)的做法是把树链剖分后,形成logn个区间,这些区间两两搭配可以获得一个矩形,求矩形面积并 然后就是对于一 ...