Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower
time limit per test
4.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power w**k then value of power of a new tower will be {w**k}p.
Rocks are added from the last to the first. That is for sequence w1, ..., w**m value of power will be
After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.
Input
First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).
Second line of input contains n integers w**k (1 ≤ w**k ≤ 109) which is the power of rocks that priests have.
Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.
k**th of next q lines contains two integers l**k and r**k (1 ≤ l**k ≤ r**k ≤ n).
Output
Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks l**k, l**k + 1, ..., r**k.
Example
input
Copy
6 10000000001 2 2 3 3 381 11 62 22 32 44 44 54 6
output
Copy
1124256327597484987
Note
327 = 7625597484987
思路:
因为euler( euler(x) ) <= x/2 所以在log(x)次内欧拉函数值就会降为1,并且一直为1.而任何数对1取模的答案都是0,所以我们可以遇见模数为1时就可以结束迭代,
因此每次询问最多迭代log(m)次,每一次迭代只需要一个快速幂的时间复杂度,也是log(m)
因此对于每一个询问综合的时间复杂度是O(log(m)^2)
注意,在指数循环节中快速幂时,需要在ans>=mod时,取模后再加上mod,以此才满足欧拉降幂定理。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll mod(ll x, ll m)
{
return x >= m ? x % m + m : x;
}
ll powmod(ll a, ll b, ll MOD)
{
ll ans = 1;
while (b)
{
if (b % 2)
ans = mod(ans * a, MOD);
// ans = ans * a % MOD;
// a = a * a % MOD;
a = mod(a * a, MOD);
b /= 2;
}
return ans;
}
ll m;
int n;
int q;
ll a[maxn];
map<ll, ll> vis;
ll euler(ll n) { //log(n)时间内求一个数的欧拉值
if (vis.count(n))
{
return vis[n];
}
ll ans = n;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans / n;
vis[n] = ans;
return ans;
}
ll solve(int l, int r, ll m)
{
if (l == r || m == 1)
return mod(a[r], m);
return powmod(a[l], solve(l + 1, r, euler(m)), m);
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
// gbtb;
// cin >> n >> m;
scanf("%d%lld", &n, &m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
// cin >> a[i];
}
// cin >> q;
scanf("%d", &q);
int l, r;
while (q--)
{
scanf("%d %d", &l, &r);
printf("%lld\n", solve(l, r, m) % m);
// cin >> l >> r;
// cout << solve(l, r, m) % m << endl;
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Codeforces Round #454 D. Power Tower (广义欧拉降幂)的更多相关文章
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Power Tower(广义欧拉降幂)
题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...
- ACM-数论-广义欧拉降幂
https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...
- 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759
广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...
- CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)
Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)
In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...
- BZOJ 3884——欧拉降幂和广义欧拉降幂
理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
随机推荐
- vue中如何编写可复用的组件?
原文地址 Vue.js 是一套构建用户界面的渐进式框架.我们可以使用简单的 API 来实现响应式的数据绑定和组合的视图组件. 从维护视图到维护数据,Vue.js 让我们快速地开发应用.但随着业务代码日 ...
- Top 5 Business Messaging Announcements at Facebook F8 2019
Top 5 Business Messaging Announcements at Facebook F8 2019 By Iaroslav Kudritskiy May 2, 2019 With t ...
- 某CTF比赛writeup
看到群里别人参加比赛发上来的附件,自己尝试解了一下. 1.提示RSA,提供flag.enc和pub.key附件 一看就是解RSA,公钥分解得到n和e n=86934482296048119190666 ...
- 2019-2020 ICPC, Asia Jakarta Regional Contest C. Even Path
Pathfinding is a task of finding a route between two points. It often appears in many problems. For ...
- Django2.2 数据库的模块model学习笔记
一.前言 为什么选用Django2.2,因为从2019年下半年起Django2.2逐渐成为长期支持版本,官网也有数据,所以当然选用维护时间长的版本 二.models的建立 Django的models也 ...
- MySQL慢查询—开启慢查询
###一.简介 开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能. ###二.参数说明 slow_query_log 慢查询开启状态 ...
- 大数据备忘录———将数据从oracle导入impala中
上周遇到了将数据从oracle导入到impala的问题,这个项目耽误了我近一周的时间,虽然是种种原因导致的,但是还是做个总结. 需求首先是跑数据,跑数据这个就不叙述,用的是公司的平台. 讲讲耽误我最久 ...
- Springmvc使用注解实现执行定时任务(定时器)
1.在Spring配置文件中添加 <task:annotation-driven/> 2.在需要调用执行定时任务的类中使用注解 @Service @Lazy(false) //避免spri ...
- SQL Server 验证身份证合法性函数(使用VBScript.RegExp)
原文:SQL Server 验证身份证合法性函数(使用VBScript.RegExp) 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/wzy0623 ...
- length 和 size 区分
总是混淆length和size,今天专门区分一下 1.在java代码(.java)中 1.length属性是针对Java中的数组来说的,要求数组的长度可以用其length属性: 2.length( ...