D. Power Tower

time limit per test

4.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power w**k then value of power of a new tower will be {w**k}p.

Rocks are added from the last to the first. That is for sequence w1, ..., w**m value of power will be

After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.

Input

First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).

Second line of input contains n integers w**k (1 ≤ w**k ≤ 109) which is the power of rocks that priests have.

Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.

k**th of next q lines contains two integers l**k and r**k (1 ≤ l**k ≤ r**k ≤ n).

Output

Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks l**k, l**k + 1, ..., r**k.

Example

input

Copy

6 10000000001 2 2 3 3 381 11 62 22 32 44 44 54 6

output

Copy

1124256327597484987

Note

327 = 7625597484987

思路:

因为euler( euler(x) ) <= x/2 所以在log(x)次内欧拉函数值就会降为1,并且一直为1.而任何数对1取模的答案都是0,所以我们可以遇见模数为1时就可以结束迭代,

  • 因此每次询问最多迭代log(m)次,每一次迭代只需要一个快速幂的时间复杂度,也是log(m)

  • 因此对于每一个询问综合的时间复杂度是O(log(m)^2)

    注意,在指数循环节中快速幂时,需要在ans>=mod时,取模后再加上mod,以此才满足欧拉降幂定理。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll mod(ll x, ll m)
{
return x >= m ? x % m + m : x;
}
ll powmod(ll a, ll b, ll MOD)
{
ll ans = 1;
while (b)
{
if (b % 2)
ans = mod(ans * a, MOD);
// ans = ans * a % MOD;
// a = a * a % MOD;
a = mod(a * a, MOD);
b /= 2;
}
return ans;
} ll m;
int n;
int q;
ll a[maxn];
map<ll, ll> vis;
ll euler(ll n) { //log(n)时间内求一个数的欧拉值
if (vis.count(n))
{
return vis[n];
}
ll ans = n;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0)
{
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans / n;
vis[n] = ans;
return ans;
} ll solve(int l, int r, ll m)
{
if (l == r || m == 1)
return mod(a[r], m);
return powmod(a[l], solve(l + 1, r, euler(m)), m);
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
// gbtb;
// cin >> n >> m;
scanf("%d%lld", &n, &m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
// cin >> a[i];
}
// cin >> q;
scanf("%d", &q);
int l, r;
while (q--)
{
scanf("%d %d", &l, &r);
printf("%lld\n", solve(l, r, m) % m);
// cin >> l >> r;
// cout << solve(l, r, m) % m << endl;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #454 D. Power Tower (广义欧拉降幂)的更多相关文章

  1. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  2. Power Tower(广义欧拉降幂)

    题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...

  3. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

  4. 广义欧拉降幂(欧拉定理)——bzoj3884,fzu1759

    广义欧拉降幂对于狭义欧拉降幂任然适用 https://blog.csdn.net/qq_37632935/article/details/81264965?tdsourcetag=s_pctim_ai ...

  5. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

  6. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  7. The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...

  8. BZOJ 3884——欧拉降幂和广义欧拉降幂

    理论部分 欧拉定理:若 $a,n$ 为正整数,且 $a,n$ 互质,则 $a^{\varphi (n)} \equiv 1(mod \ n)$. 降幂公式: $$a^b=\begin{cases}a^ ...

  9. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

随机推荐

  1. docker容器内存和CPU使用限制

    docker容器内存和CPU使用限制 示例如下 sudo docker run --name seckill0 -p 8080:8080 -m 1024M --cpus=0.2 -d seckill: ...

  2. Shell脚本无限调用

    #! /bin/bash # this shell can run endlessfully echo "i love you ! " sh ./run 通过echo来显示了无限调 ...

  3. 华三F100系列防火墙 、华为USG6300系列防火 GRE 隧道配置

    GRE概述: 通用路由封装(GRE: Generic Routing Encapsulation)是通用路由封装协议,可以对某些网络层协议的数据报进行封装,使这些被封装的数据报能够在IPV4网络中传输 ...

  4. Cassandra的架构

    第5章 Cassandra 的架构 5.1 system keyspace Cassandra有一个称为system的内部keyspace,用于存储关于集群的元数据.包括:节点令牌,集群名,用于支持动 ...

  5. vue工程中,如何查询用户访问的地理位置 + vue中的jsonp

    有一个需求,就是当用户访问你们公司的网站时,需要查到这位用户的地理位置(通过电脑ip来访问) 试了很多方法,感觉使用腾讯的位置服务api最好,返回的信息最全,包括经纬度,国家城市地区等.而其他绝大多数 ...

  6. poj3714 Raid(分治求平面最近点对)

    题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...

  7. (模板)luoguP3806(树上点分治模板题)

    点分治的写法1: 题目链接:https://www.luogu.org/problem/P3806 题意:给出一颗带边权的树,结点数n<=1e4,每条边有权值<=1e4,有m组询问(m&l ...

  8. Linux:IFS分隔符的使用

    IFS分隔符的使用 data="name, gender,rollno,location" 我们可以使用IFS读取变量中的每一个条目. oldIFS=$IFS IFS=, #IFS ...

  9. 什么是时序时空数据库TSDB

    时序时空数据库(Time Series & Spatial Temporal Database,简称 TSDB)是一种高性能.低成本.稳定可靠的在线时序时空数据库服务,提供高效读写.高压缩比存 ...

  10. 【LOJ】#3046. 「ZJOI2019」语言

    LOJ#3046. 「ZJOI2019」语言 先orz zsy吧 有一个\(n\log^3n\)的做法是把树链剖分后,形成logn个区间,这些区间两两搭配可以获得一个矩形,求矩形面积并 然后就是对于一 ...