1.      The Lloyd-Max algorithm is hill-climbing algorithm

第六节最后提出一个好的quantizer必须满足Lloyd-Max条件,但满足Lloyd-Max条件的不一定都是最优方案,举个例子:

It can be seen in the figure that the rightmost peak is more probable than the other peaks. It follows that the MSE would be lower if R1 covered the two leftmost peaks. However, in this figure, the two rightmost peaks are both covered by R2, with the point a2 between them. Both the points and the regions satisfy the necessary conditions and cannot be locally improved.

从哪里开始分会得到不同的结果,局部优不代表结果最优。The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of values, these values are modified until reaching the top of a hill where no more local improvements are possible.

2.      Vector quantization

As with source coding of discrete sources, we next consider quantizing n source variables at a time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector rv in an n-dimensional vector space.

Let (U, U) be the two rv’s being jointly quantized. Since mapping (u, u’) into (aj, aj’) generates a squared error equal to (u−aj )² + (u’−aj’)², the point (aj, aj’) which is closest to (u, u’) in Euclidean distance should be chosen. Consequently, the region Rj must be the set of points (u, u’) that are closer to (aj, aj’) than to any other representation point.

For the given representation points, the regions {Rj} are minimum-distance regions and are called Voronoi regions. The boundaries of the Voronoi regions are perpendicular bisectors(垂直平分线) between neighboring representation points. The minimum-distance regions are thus in general convex polygonal regions(凸多边形), as illustrated in the figure below:

3.      Entropy-coded quantization

The minimum expected number of bits per symbol, Lmin, required to encode the quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source coding of the quantized outputs, we should really try to minimize the MSE for a given entropy H[V ] rather than a given number of representation points.

This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 = L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense for M large), the minimum MSE occurs when ∆i is chosen inversely proportional to the cube root of fi. In other words,

Appendix 3 shows that, in the limit of high rate, the quantization intervals all have the same length! A scalar quantizer in which all intervals have the same length is called a uniform scalar quantizer. The following sections will show that uniform scalar quantizers have remarkable properties for high-rate quantization.

4.      High-rate entropy-coded quantization

The quantization regions can be made sufficiently small so that the probability density is approximately constant within each region.

This means that a uniform quantizer can be used as a universal quantizer with very little loss of optimality. The probability distribution of the rv’s to be quantized can be exploited at the level of discrete source coding.

The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U] of an analog rv. After defining h[U],the properties of H[U] and h[U] will be compared.

5.      Differential entropy

The differential entropy h[U] of an analog random variable (rv) U is analogous to the entropy H[X] of a discrete random symbol X.

LESSON 7- High Rate Quantizers and Waveform Encoding的更多相关文章

  1. Spring特性--DI

    DI:Dependency Injection(依赖注入),通俗的讲就是一种通过xml配置文件,为交给sping容器的对象初始化参数.又称做控制反转:Inversion of Control(IoC) ...

  2. ITU-T G.1080 IPTV的体验质量(QoE)要求 (Quality of experience requirements for IPTV services)

    IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation de ...

  3. JSP中文乱码问题的由来以及解决方法

    首先明确一点,在计算机中,只有二进制的数据! 一.java_web乱码问题的由来 1.字符集 1.1 ASCII字符集 在早期的计算机系统中,使用的字符非常少,这些字符包括26个英文字母.数字符号和一 ...

  4. Linux 对音频万能处理的命令——SOX

    what's the SOX         SoX(即 Sound eXchange)是一个跨平台(Windows,Linux,MacOS 等)的命令行实用程序,可以将各种格式的音频文件转换为需要的 ...

  5. <爬虫>黑板爬虫闯关01

    import requests from lxml import etree import time ''' 黑板爬虫闯关 网址:http://www.heibanke.com/lesson/craw ...

  6. LESSON 2-Discrete Source Encoding

    Keywords: Source types, Discrete source coding, Kraft inequality 1.      Source classes About Figure ...

  7. [ZZ] RGBM and RGBE encoding for HDR

    Deferred lighting separate lighting rendering and make lighting a completely image-space technique. ...

  8. 【Android Training UI】创建自定义Views(Lesson 0 - 章节概览)

    发表在我的独立网站http://kesenhoo.github.io/blog/2013/06/30/android-training-ui-creating-custom-views-lesson- ...

  9. [转]Introduction to Core Bluetooth: Building a Heart Rate Monitor

    ref:http://www.raywenderlich.com/52080/introduction-core-bluetooth-building-heart-rate-monitor The C ...

随机推荐

  1. js中Ajax工作原理(转)

    在写这篇文章之前,曾经写过一篇关于AJAX技术的随笔,不过涉及到的方面很窄,对AJAX技术的背景.原理.优缺点等各个方面都很少涉及null.这次写这篇文章的背景是因为公司需要对内部程序员做一个培训.项 ...

  2. import org.apache.ibatis.annotations.Param 报错

    说明缺少依赖 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus ...

  3. diff:二进制文件内容差异比较

    在Ubuntu 18.04下验证,造冰箱的大熊猫@cnblogs 2019/7/29 假设我们需要以二进制格式比较两个文件file1.bin和file2.bin的差异,一个简单的方法是 1)先使用xx ...

  4. Codevs 1629 01迷宫

    1629 01迷宫 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有一个由01组成的n*n格迷宫,若你位于一格0上,那么你可 ...

  5. 转:后置处理器JSON Extractor 提取json的多个值

    json串 []表示对象组成的数组,{}表示对象. 对象里包含多个 "属性":属性值.属性值可以是值,或数组,或对象. JSON Extractor使用json path表达式匹配 ...

  6. #define定义宏函数 的正确使用

    如何使用宏来定义一个自定义函数呢?首先我们来看下面这段代码 #define SQUARE(x) x*x int main() { int a = 5; printf("SQUARE(a): ...

  7. INNER JOIN连接两个表、三个表、五个表的SQL语句

    1.连接两个数据表的用法: FROM Member INNER JOIN MemberSort ON Member.MemberSort=MemberSort.MemberSort 语法格式可以概括为 ...

  8. 【java设计模式】-01设计模式简介

    简介 设计模式(Design pattern)是软件开发人员在软件开发过程中面临的一般问题的解决方案.这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来的. 设计模式是一套被反复使 ...

  9. epoll反应堆

    /* * epoll基于非阻塞I/O事件驱动 */ #include <stdio.h> #include <sys/socket.h> #include <sys/ep ...

  10. oracle面试题2

    1.题目要求 为管理岗位业务培训信息,建立3个表:S (S#,SN,SD,SA) S#,SN,SD,SA 分别代表学号.学员姓名.所属单位.学员年龄C (C#,CN ) C#,CN 分别代表课程编号. ...