1.      The Lloyd-Max algorithm is hill-climbing algorithm

第六节最后提出一个好的quantizer必须满足Lloyd-Max条件,但满足Lloyd-Max条件的不一定都是最优方案,举个例子:

It can be seen in the figure that the rightmost peak is more probable than the other peaks. It follows that the MSE would be lower if R1 covered the two leftmost peaks. However, in this figure, the two rightmost peaks are both covered by R2, with the point a2 between them. Both the points and the regions satisfy the necessary conditions and cannot be locally improved.

从哪里开始分会得到不同的结果,局部优不代表结果最优。The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of values, these values are modified until reaching the top of a hill where no more local improvements are possible.

2.      Vector quantization

As with source coding of discrete sources, we next consider quantizing n source variables at a time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector rv in an n-dimensional vector space.

Let (U, U) be the two rv’s being jointly quantized. Since mapping (u, u’) into (aj, aj’) generates a squared error equal to (u−aj )² + (u’−aj’)², the point (aj, aj’) which is closest to (u, u’) in Euclidean distance should be chosen. Consequently, the region Rj must be the set of points (u, u’) that are closer to (aj, aj’) than to any other representation point.

For the given representation points, the regions {Rj} are minimum-distance regions and are called Voronoi regions. The boundaries of the Voronoi regions are perpendicular bisectors(垂直平分线) between neighboring representation points. The minimum-distance regions are thus in general convex polygonal regions(凸多边形), as illustrated in the figure below:

3.      Entropy-coded quantization

The minimum expected number of bits per symbol, Lmin, required to encode the quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source coding of the quantized outputs, we should really try to minimize the MSE for a given entropy H[V ] rather than a given number of representation points.

This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 = L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense for M large), the minimum MSE occurs when ∆i is chosen inversely proportional to the cube root of fi. In other words,

Appendix 3 shows that, in the limit of high rate, the quantization intervals all have the same length! A scalar quantizer in which all intervals have the same length is called a uniform scalar quantizer. The following sections will show that uniform scalar quantizers have remarkable properties for high-rate quantization.

4.      High-rate entropy-coded quantization

The quantization regions can be made sufficiently small so that the probability density is approximately constant within each region.

This means that a uniform quantizer can be used as a universal quantizer with very little loss of optimality. The probability distribution of the rv’s to be quantized can be exploited at the level of discrete source coding.

The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U] of an analog rv. After defining h[U],the properties of H[U] and h[U] will be compared.

5.      Differential entropy

The differential entropy h[U] of an analog random variable (rv) U is analogous to the entropy H[X] of a discrete random symbol X.

LESSON 7- High Rate Quantizers and Waveform Encoding的更多相关文章

  1. Spring特性--DI

    DI:Dependency Injection(依赖注入),通俗的讲就是一种通过xml配置文件,为交给sping容器的对象初始化参数.又称做控制反转:Inversion of Control(IoC) ...

  2. ITU-T G.1080 IPTV的体验质量(QoE)要求 (Quality of experience requirements for IPTV services)

    IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation de ...

  3. JSP中文乱码问题的由来以及解决方法

    首先明确一点,在计算机中,只有二进制的数据! 一.java_web乱码问题的由来 1.字符集 1.1 ASCII字符集 在早期的计算机系统中,使用的字符非常少,这些字符包括26个英文字母.数字符号和一 ...

  4. Linux 对音频万能处理的命令——SOX

    what's the SOX         SoX(即 Sound eXchange)是一个跨平台(Windows,Linux,MacOS 等)的命令行实用程序,可以将各种格式的音频文件转换为需要的 ...

  5. <爬虫>黑板爬虫闯关01

    import requests from lxml import etree import time ''' 黑板爬虫闯关 网址:http://www.heibanke.com/lesson/craw ...

  6. LESSON 2-Discrete Source Encoding

    Keywords: Source types, Discrete source coding, Kraft inequality 1.      Source classes About Figure ...

  7. [ZZ] RGBM and RGBE encoding for HDR

    Deferred lighting separate lighting rendering and make lighting a completely image-space technique. ...

  8. 【Android Training UI】创建自定义Views(Lesson 0 - 章节概览)

    发表在我的独立网站http://kesenhoo.github.io/blog/2013/06/30/android-training-ui-creating-custom-views-lesson- ...

  9. [转]Introduction to Core Bluetooth: Building a Heart Rate Monitor

    ref:http://www.raywenderlich.com/52080/introduction-core-bluetooth-building-heart-rate-monitor The C ...

随机推荐

  1. HDU 3081 Marriage Match II 最大流OR二分匹配

    Marriage Match IIHDU - 3081 题目大意:每个女孩子可以和没有与她或者是她的朋友有过争吵的男孩子交男朋友,现在玩一个游戏,每一轮每个女孩子都要交一个新的男朋友,问最多可以玩多少 ...

  2. Pap.er 模仿 - 第二天

    最后更新:2017-12-19 在第一天中, 我们完成了项目的基本设置.隐藏Dock.显示和隐藏Popover等操作,接下来的这章中, Pap.er将会去搭建对应 UI. 一.设置Popover对应颜 ...

  3. CF1204A

    CF1204A. BowWow and the Timetable 题意: 给你一个2进制数,求这个2进制数在10进制中的 $ 4^i $ 的个数. 解法: 其实就是 $ \ulcorner_{\lo ...

  4. Liunx反弹shell的几种方式

    什么是反弹shell? 简单理解,通常是我们主动发起请求,去访问服务器(某个IP的某个端口),比如我们常访问的web服务器:http(https)://ip:80,这是因为在服务器上面开启了80端口的 ...

  5. 使用git Bash Here 绑定账号密码错误后 无法自动重新绑定

    新安装的git 要打开gitbash 运行下面两个命令:1 git config --global user.name "Your Name"2 git config --glob ...

  6. springboot properties

    Spring-boot中Conditional介绍 https://blog.csdn.net/tanga842428/article/details/78615070springBoot----@C ...

  7. 查看MySQL 连接信息--连接空闲时间及正在执行的SQL

    MySQL 客户端与MySQL server建立连接后,就可以执行SQL语句了. 如何查看一个连接上是否正在执行SQL语句,或者连接是否处于空闲呢? 下面我们做下测试. 1.查看连接的空闲时间 首先看 ...

  8. shift and add算法相关

    1.超分辨率 非均匀插值 Farsiu S, Robinson D, Milanfar P. Robust shift and add approach to superresolution[J]. ...

  9. 实验吧中围在栅栏中的爱-------writeup

    涉及知识点:栅栏密码解密.摩斯密码解密.替代密码解密 题目 可以看到下面一行东西,明显是一串摩斯密码,利用CTFCrakTools将密文解密 得到另一串密码kiqlwtfcqgnsoo 那么我们尝试着 ...

  10. Message NNNN not found; No message file for product=network, facility=TNS

    Message NNNN not found; No message file for product=network, facility=TNS Table of Contents 1. 错误信息 ...