P2163 [SHOI2007]园丁的烦恼

题目描述

很久很久以前,在遥远的大陆上有一个美丽的国家。统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草。

有一天国王漫步在花园里,若有所思,他问一个园丁道: “最近我在思索一个问题,如果我们把花坛摆成六个六角形,那么……”

“那么本质上它是一个深度优先搜索,陛下”,园丁深深地向国王鞠了一躬。

“嗯……我听说有一种怪物叫九头蛇,它非常贪吃苹果树……”

“是的,显然这是一道经典的动态规划题,早在N元4002年我们就已经发现了其中的奥秘了,陛下”。

“该死的,你究竟是什么来头?”

“陛下息怒,干我们的这行经常莫名其妙地被问到和OI有关的题目,我也是为了预防万一啊!” 王者的尊严受到了伤害,这是不可容忍的。

看来一般的难题是难不倒这位园丁的,国王最后打算用车轮战来消耗他的实力: “年轻人,在我的花园里的每一棵树可以用一个整数坐标来表示,一会儿,我的骑士们会来轮番询问你某一个矩阵内有多少树,如果你不能立即答对,你就准备走人吧!”说完,国王气呼呼地先走了。

这下轮到园丁傻眼了,他没有准备过这样的问题。所幸的是,作为“全国园丁保护联盟”的会长——你,可以成为他的最后一根救命稻草。

输入格式

第一行有两个整数n,m(0≤n≤500000,1≤m≤500000)。n代表皇家花园的树木的总数,m代表骑士们询问的次数。

文件接下来的n行,每行都有两个整数xi,yi,代表第i棵树的坐标(0≤xi,yi≤10000000)。

文件的最后m行,每行都有四个整数aj,bj,cj,dj,表示第j次询问,其中所问的矩形以(aj,bj)为左下坐标,以(cj,dj)为右上坐标。

输出格式

共输出m行,每行一个整数,即回答国王以(aj,bj)和(cj,dj)为界的矩形里有多少棵树。

输入输出样例

输入 #1复制

3 1
0 0
0 1
1 0
0 0 1 1

输出 #1复制

3

思路:

三维偏序解决二维平面中矩形包括多少个点数问题。

维度:

{

​ x轴

​ y轴

​ 操作类型

}

我们把初始给定的n个点转为向坐标系中加点的操作

m个询问转为询问问题。

那么按照x,y升序排序,想x和y都相等时,加点的操作优先。

通过二维前缀和性质,把询问分解为四个(0,0)节点为左下角子询问积累贡献求得。

排序后,利用树桩数组来维护答案。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 3000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ ll tree[maxn];
int lowbit(int x)
{
return -x & x;
}
ll ask(int x)
{
ll res = 0ll;
while (x) {
res += tree[x];
x -= lowbit(x);
}
return res;
}
int my=0;
void add(int x, ll val)
{
while (x < my) {
tree[x] += val;
x += lowbit(x);
}
}
pii a[maxn];
pii b[maxn];
pii c[maxn];
int n, m;
std::vector<int> vx,vy;
struct node {
int op;
int x, y;
int k;
int id;
node() {}
node(int opp, int xx, int yy, int kk, int idd)
{
op = opp;
x = xx;
y = yy;
k = kk;
id = idd;
}
} info[maxn];
int ans[maxn];
bool cmp(node aa, node bb)
{
if (aa.x != bb.x) {
return aa.x < bb.x;
} else if (aa.op != bb.op) {
return aa.op < bb.op;
} else {
return aa.y < bb.y;
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> m;
repd(i, 1, n) {
cin >> a[i].fi >> a[i].se;
vx.push_back(a[i].fi);
vy.push_back(a[i].se);
}
repd(i, 1, m) {
cin >> b[i].fi >> b[i].se >> c[i].fi >> c[i].se;
vx.push_back(b[i].fi);
vy.push_back(b[i].se);
vx.push_back(c[i].fi);
vy.push_back(c[i].se);
vy.push_back(b[i].se - 1);
vx.push_back(b[i].fi - 1);
}
sort(ALL(vx));
sort(ALL(vy));
vx.erase(unique(ALL(vx)),vx.end());
vy.erase(unique(ALL(vy)),vy.end());
my=sz(vy)+10;
int cnt = 0;
int dx, dy;
repd(i, 1, n) {
++cnt;
dx = lower_bound(ALL(vx), a[i].fi) - vx.begin() + 1;
dy = lower_bound(ALL(vy), a[i].se) - vy.begin() + 1;
info[cnt] = node(0, dx, dy, 0, 0);
}
repd(i, 1, m) {
++cnt;
dx = lower_bound(ALL(vx), c[i].fi) - vx.begin() + 1;
dy = lower_bound(ALL(vy), c[i].se) - vy.begin() + 1;
info[cnt] = node(1, dx, dy, 1, i); ++cnt;
dx = lower_bound(ALL(vx), c[i].fi) - vx.begin() + 1;
dy = lower_bound(ALL(vy), b[i].se - 1) - vy.begin() + 1;
info[cnt] = node(1, dx, dy, -1, i); ++cnt;
dx = lower_bound(ALL(vx), b[i].fi - 1) - vx.begin() + 1;
dy = lower_bound(ALL(vy), c[i].se) - vy.begin() + 1;
info[cnt] = node(1, dx, dy, -1, i); ++cnt;
dx = lower_bound(ALL(vx), b[i].fi-1) - vx.begin() + 1;
dy = lower_bound(ALL(vy), b[i].se-1) - vy.begin() + 1;
info[cnt] = node(1, dx, dy, 1, i); }
sort(info + 1, info + 1 + cnt, cmp);
repd(i, 1, cnt) {
if (!info[i].op) {
add(info[i].y, 1);
} else {
ans[info[i].id] += info[i].k * ask(info[i].y);
}
}
repd(i, 1, m) {
printf("%d\n", ans[i] );
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

洛谷 P2163 [SHOI2007]园丁的烦恼 (离线sort,树状数组,解决三维偏序问题)的更多相关文章

  1. BZOJ1935或洛谷2163 [SHOI2007]园丁的烦恼

    BZOJ原题链接 洛谷原题链接 很容易想到二维前缀和. 设\(S[i][j]\)表示矩阵\((0, 0)(i, j)\)内树木的棵数,则询问的矩形为\((x, y)(xx, yy)\)时,答案为\(S ...

  2. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼( 差分 + 离散化 + 树状数组 )

    假如矩阵范围小一点就可以直接用二维树状数组维护. 这道题,  差分答案, 然后一维排序, 另一维离散化然后树状数组维护就OK了. ----------------------------------- ...

  3. 洛谷 P1975 [国家集训队]排队 Lebal:块内排序+树状数组

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和. 红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...

  4. 洛谷 P2038 无线网络发射器选址 —— 二维树状数组

    题目:https://www.luogu.org/problemnew/show/P2038 大水题暴露出我的愚蠢. 用二维树状数组,然而居然忘了它应该那样写,调了一个小时: 正方形可以超出外面,只要 ...

  5. P2163 [SHOI2007]园丁的烦恼

    题目 P2163 [SHOI2007]园丁的烦恼 做法 关于拆点,要真想拆直接全部用树状数组水过不就好了 做这题我们练一下\(cdq\)分治 左下角\((x1,y1)\)右上角\((x2,y2)\), ...

  6. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  7. 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询

    题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...

  8. HDU 4746 莫比乌斯反演+离线查询+树状数组

    题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...

  9. hdu-3333 Turing Tree 离线区间+树状数组(区间不同数的和)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 题目大意: 给出一数组,以及m个查询区间,每次查询该区间不同数字的和.相同数字只加一次. 解题 ...

随机推荐

  1. oracle自增主键

    本文参考-https://www.cnblogs.com/xxaxx/p/3584036.html oracle没有像sqlserver中identity一样的函数,需要依赖于序列.触发器来实现自增主 ...

  2. Egret入门学习日记 --- 第六篇(书中 3.6~3.9节 内容)

    第六篇(书中 3.6~3.9节 内容) 在本篇写之前,还是要为昨天写的日记道歉才行,差点就误人子弟了. 没想到在程序员界最低级的错误 “单词拼写错误” 还是会经常犯. childrenCreated ...

  3. 最新 欢聚时代java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.欢聚时代等10家互联网公司的校招Offer,因为某些自身原因最终选择了欢聚时代.6.7月主要是做系统复习.项目复盘.Leet ...

  4. JavaScript里的类和继承(转)

    转自: http://www.h5cn.com/js/jishu/2016/0121/17634.html js与大部分客户端语言有几点明显的不同: JS是 动态解释性语言,没有编译过程,它在程序运行 ...

  5. PDF转任意格式 & 做动画效果

    1.PDF转任意格式 & 做动画效果|让PPT傻眼去吧! http://www.aiweibang.com/yuedu/6984803.html

  6. linux系统调用、库函数和内核函数关系与区别

    看系统调用,还有库函数,以前一直不明白,总是以为 系统调用跟库函数是一样的,但是今天才知道是不一样的. 库函数也就是我们通常所说的应用编程接口API,它其实就是一个函数定义,比如常见read().wr ...

  7. VS code 的使用

    VS code 是一个非常不错的代码编辑器.它不依赖与任何编译器或者解释器,但却能高效的利用第三方编译器或解释器来给用户提供良好的代码编写环境. 我喜欢VS code的三点,丰富强大的插件,快捷的语法 ...

  8. javaSE 笔记一

    java 环境变量配置 步骤:   右键[计算机]图标 –>[属性]–>[高级系统设置]–>[环境变量]   在"系统变量"里找到"Path" ...

  9. logstash grok

    input { file { path => "/opt/service/test-service/logs/catalina-error*.log" type => ...

  10. jupyter lab 的基本使用

    在创建一个文件即可 进入创建的文件,在创建一个ipynb文件即可操作 注意右上角必须是python3 可以哦(如果点了shutdown 就会没有内核 需要自己在定义python编辑器) jupyter ...