Water Testing

题目描述

You just bought a large piece of agricultural land, but you noticed that – according to regulations – you have to test the ground water at specific points on your property once a year. Luckily the description of these points is rather simple. The whole country has been mapped using a Cartesian Coordinate System (where (0, 0) is the location of the Greenwich Observatory). The corners of all land properties are located at integer coordinates according to this coordinate system. Test points for ground water have to be erected on every point inside a property whose coordinates are integers.

输入

The input consists of:
• one line with a single integer n (3 ≤ n ≤ 100 000), the number of corner points of your property;
• n lines each containing two integers x and y (−106 ≤ x, y ≤ 106 ), the coordinates of each corner.
The corners are ordered as they appear on the border of your property and the polygon described by the points does not intersect itself.

输出

The number of points with integer coordinates that are strictly inside your property.

样例输入

4
0 0
0 10
10 10
10 0

样例输出

81


【题解】

皮克定理模版题,大家注意,面积可能在点乘的时候是负数。

还需要开Long Long

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e6+; ll gcd(ll u,ll v){
return (v == 0ll) ? u : gcd(v,u%v);
} typedef struct point{
ll x , y ;
point() {}
point(ll a,ll b):x(a),y(b) {}
void input(){
scanf("%lld%lld",&x,&y);
}
friend point operator + ( const point &a , const point &b ){
return point(a.x + b.x , a.y + b.y );
}
friend point operator - ( const point &a , const point &b ){
return point(a.x - b.x , a.y - b.y );
} }point; point List[maxn];
ll det(const point & a , const point & b){
return a.x * b.y - a.y * b.x ;
} ll Abs( ll x ){
return (x>=?x:-x);
} ll area( point a[] ,int n)
{
ll sum = ;
a[n] = a[] ;
for(int i=; i<n; i++) sum += det(a[i+],a[i]);
return sum ;
}
ll Border_Int_Point_Num( point a[] , int n)
{
ll num = ;
a[n] = a[];
for(int i=; i<n; i++)
{
if( Abs((a[i+].x-a[i].x)) == ){
num += Abs(a[i+].y-a[i].y);
}else if( Abs((a[i+].y-a[i].y)) == ){
num += Abs(a[i+].x-a[i].x);
}else{
num += gcd(Abs(ll(a[i+].x-a[i].x)),Abs(ll(a[i+].y-a[i].y)));
}
}
return num ;
}
ll Inside_Int_Point_Num( point a[] , int n )
{
ll Area = area(a,n) ;
Area = Abs(Area);
return ( Area - Border_Int_Point_Num(a,n) ) / + ; }
//polyon S ; int n;
int main()
{
scanf("%d",&n);
//S.n = n ; for(int i=;i<n;i++)
List[i].input();
/*
sort ( List , List + n , cmp ); for(int i=n-1;i>=0;i--){
S.a[i] = List[n-i-1] ;
} for(int i=0;i<n;i++){
scanf("%lld%lld",&S.a[i].x,&S.a[i].y);
}
*/
printf("%lld\n",Inside_Int_Point_Num(List,n));
return ;
}

【计算几何】Water Testing的更多相关文章

  1. Water Testing【皮克定理,多边形面积,线段上点的数目】

    Water Testing 传送门:链接  来源:UPC 9656 题目描述 You just bought a large piece of agricultural land, but you n ...

  2. Gym 101873G - Water Testing - [皮克定理]

    题目链接:http://codeforces.com/gym/101873/problem/G 题意: 在点阵上,给出 $N$ 个点的坐标(全部都是在格点上),将它们按顺序连接可以构成一个多边形,求该 ...

  3. Codeforces-GYM101873 G Water Testing 皮克定理

    题意: 给定一个多边形,这个多边形的点都在格点上,问你这个多边形里面包含了几个格点. 题解: 对于格点多边形有一个非常有趣的定理: 多边形的面积S,内部的格点数a和边界上的格点数b,满足如下结论: 2 ...

  4. 2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)

    A Drawing Borders 很多构造方法,下图可能是最简单的了 代码: #include<bits/stdc++.h> using namespace std; ; struct ...

  5. 2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017) Solution

    A. Drawing Borders Unsolved. B. Buildings Unsolved. C. Joyride Upsolved. 题意: 在游乐园中,有n个游玩设施,有些设施之间有道路 ...

  6. (寒假开黑gym)2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)

    layout: post title: (寒假开黑gym)2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017) au ...

  7. The German Collegiate Programming Contest 2017

    B - Building 给一个m各面的多边形柱体,每一侧面有n*n个格子,现在对这些格子染色,看有多少种方式使得多面柱体无论如何旋转都不会与另一个一样. #include <bits/stdc ...

  8. 2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)(9/11)

    $$2017-2018\ ACM-ICPC\ German\ Collegiate\ Programming\ Contest (GCPC 2017)$$ \(A.Drawing\ Borders\) ...

  9. ZOJ3238 Water Ring(计算几何)

    题意:给你一个圆形和很多个矩形,然后要你求圆形的圆周有多少被矩形覆盖. 思路:比赛的时候是有思路的了,不过一直在调别的题,最后剩下30分钟肯定来不及敲.想法是这样的,要是我们可以求出每个矩形覆盖了圆周 ...

随机推荐

  1. [APIO2015]八邻旁之桥——非旋转treap

    题目链接: [APIO2015]八邻旁之桥 对于$k=1$的情况: 对于起点和终点在同侧的直接计入答案:对于不在同侧的,可以发现答案就是所有点坐标与桥坐标的差之和+起点与终点不在同一侧的人数. 将所有 ...

  2. C++生成DM数据点导入DM

    在c++编写正弦曲线点的代码,源代码如下: //想要使用内置的π,此句必不可少! #define _USE_MATH_DEFINES #include<iostream> #include ...

  3. 20165223《网络对抗技术》Exp7 网络欺诈防范

    目录 -- 网络欺诈防范 实践说明 实践目标 基础知识问答 实验工具学习 实践内容 简单应用SET工具建立冒名网站 ettercap DNS spoof 结合应用两种技术,用DNS spoof引导特定 ...

  4. git 删除目录及子目录下的同名文件

    find . -name ".git" | xargs rm -Rf find . -name ".gitignore" | xargs rm -Rf

  5. node.js 简易聊天室

    效果图 首先开启server.js 打开服务器端,然后打开client.js,注册用户.打开一个注册一个用户,打开三个,注册三个用户. 接下来,小王发布一个广播消息,小李和小刘都收到了此消息. 接下来 ...

  6. Random Projection

    Random Projection在k-means的应用   1. 随机投影 (Random Projection) 首先,这是一种降维方法.之前已经介绍过相对普遍的PCA的降维方法,这里介绍另一种降 ...

  7. matlab中x.^2与x^2有什么区别?

    .^2是矩阵中的每个元素都求平方,^2是求矩阵的平方或两个相同的矩阵相乘,因此要求矩阵为方阵,且看下面的例子x=1:4x = 1 2 3 4 x.^2 ans = 1 4 9 16 x^2 Error ...

  8. <JavaScript>尺寸类样式的获取

    尺寸类样式的获取 offsetHeight HTMLElement.offsetHeight 是一个只读属性,它返回该元素的像素高度,高度包含该元素的垂直内边距和边框,且是一个整数.(content+ ...

  9. 用html+css+js实现一个无限级树形控件

    https://blog.csdn.net/cc_fys/article/details/81284638 树形菜单示例: <!DOCTYPE html> <head> < ...

  10. Android插件化(五):OpenAtlasの四大组件的Hack

    Android插件化(五):OpenAtlasの四大组件的Hack   转 https://www.300168.com/yidong/show-2776.html 核心提示:引言到目前为止,我们已经 ...