# https://github.com/confluentinc/confluent-kafka-python/blob/master/examples/consumer.py
#生产者
import json
from kafka import KafkaProducer
from confluent_kafka import Producer msg_dict = {
"interval": 10,
"producer": {
"name": "producer 1",
"host": "10.10.10.1",
"user": "root",
"password": "root"
},
"cpu": "33.5%",
"mem": "77%",
"msg": "Hello kafka",
"data": "测试",
} def test():
producer = KafkaProducer(bootstrap_servers='127.0.0.1:9092') # 连接kafka msg = "Hello World".encode('utf-8') # 发送内容,必须是bytes类型 # msg = {"data": 1}
# producer.send('mytopic', json.dumps(msg_dict).encode("utf-8")) # 发送的topic为test
producer.send('mytopic', json.dumps(msg_dict)) # 发送的topic为test
producer.close() # p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})
p = Producer({'bootstrap.servers': '127.0.0.1:9092,mybroker2'}) def delivery_report(err, msg):
""" Called once for each message produced to indicate delivery result.
Triggered by poll() or flush(). """
if err is not None:
print('Message delivery failed: {}'.format(err))
else:
print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition())) # some_data_source = [str(i) + "*" for i in range(100)]
some_data_source = [json.dumps(msg_dict) for i in range(5)]
for data in some_data_source:
# Trigger any available delivery report callbacks from previous produce() calls
p.poll(0.1)
# 异步通信 triggered(触发) delivered(递送)
# Asynchronously produce a message, the delivery report callback
# will be triggered from poll() above, or flush() below, when the message has
# been successfully delivered or failed permanently.
p.produce('mytopic', data.encode('utf-8'), callback=delivery_report) # Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered. 等待任何未完成的消息被传递,并触发传递报告回调。
p.flush() if __name__ == '__main__':
# test()
pass # 消费者 import json
from kafka import KafkaConsumer
from confluent_kafka.avro import AvroProducer, AvroConsumer
from confluent_kafka import Consumer, KafkaError def one():
consumer = KafkaConsumer('mytopic', bootstrap_servers=['127.0.0.1:9092'])
for msg in consumer:
# print(type(msg.value))
# print(str(msg.value, encoding="utf8"))
print(msg.value.decode())
recv = "%s:%d:%d: key=%s value=%s" % (msg.topic, msg.partition, msg.offset, msg.key, msg.value.decode("utf-8"))
print("...")
print(recv) bootstrap_servers = '127.0.0.1:9092,xxx' def two():
client = AvroProducer({
'bootstrap.servers': bootstrap_servers,
'schema.registry.url': "",
})
value = {"test": "value"}
key = {"test": "key"}
client.produce(topic="mytopic", value=value, key=key)
client.flush() def three():
c = Consumer({
# 'bootstrap.servers': 'mybroker',
'bootstrap.servers': bootstrap_servers,
'group.id': 'mygroup2',
'auto.offset.reset': 'earliest'
}) c.subscribe(['mytopic']) while True:
msg = c.poll(1.0) if msg is None:
continue
if msg.error():
print("Consumer error: {}".format(msg.error()))
continue
print(type(msg.value()))
print(msg.value())
print(json.loads(msg.value().decode('utf-8')))
print('Received message: {}'.format(msg.value().decode('utf-8'))) c.close() if __name__ == '__main__':
# one()
# two()
three()

py kafka的更多相关文章

  1. Storm sql 简单测试

    准备工作: 1.安装Kafka,启动,以及创建相应的topic 1.启动kafka bin/kafka-server-start.sh config/server.properties > /d ...

  2. [Spark] 07 - Spark Streaming Programming

    Streaming programming 一.编程套路 编写Streaming程序的套路 创建DStream,也就定义了输入源. 对DStream进行一些 “转换操作” 和 "输出操作&q ...

  3. kafka Py客户端

    1.pip install kafka-python 2.Producer.py from kafka import KafkaProducer producer = KafkaProducer(bo ...

  4. Ambari 不能配置 Kafka 监听host的问题

    问题:Ambari下Kafka多IP监听配置 环境:Ambari 1.7.0 , Hadoop 2.2 Kafka 0.8.1.2.2.0.0 现象: Ambari 中是不能配置Kafka的host. ...

  5. flume+kafka+smart数据接入实施手册

    1.  概述 本手册主要介绍了,一个将传统数据接入到Hadoop集群的数据接入方案和实施方法.供数据接入和集群运维人员参考. 1.1.   整体方案 Flume作为日志收集工具,监控一个文件目录或者一 ...

  6. 检测zookeeper和kafka是否正常

    cd $(dirname $) source ~/.bash_profile count_zoo=`ps -ef | grep "config/zookeeper.properties&qu ...

  7. kafka学习(四)-Topic & Partition

    topic中partition存储分布 Topic在逻辑上可以被认为是一个queue.每条消费都必须指定它的topic,可以简单理解为必须指明把这条消息放进哪个queue里.为了使得 Kafka的吞吐 ...

  8. 使用spark-streaming实时读取Kafka数据统计结果存入MySQL

    在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订 ...

  9. 生产环境一键创建kafka集群

    前段时间公司的一个kafka集群出现了故障,由于之前准备不足,当时处理的比较慌乱.如:由于kafka的集群里topic数量较多,并且每个topic的分区数量和副本数量都不是一样的,如果按部就班的一个一 ...

随机推荐

  1. LDAP的filter查询详解

    转: 等于(EQUAL TO):  =大于等于(Greater than):  >=小于等于(Less than):  <=通配符(wildcard):  *  逻辑运算符:逻辑与(log ...

  2. POM 标签大全详解

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  3. linux内核中IS_ALIGNED是如何定义的?

    1. 定义如下: (include/linux/kernel.h) #define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a ...

  4. SQL-W3School-总结:SQL 快速参考

    ylbtech-SQL-W3School-总结:SQL 快速参考 1.返回顶部 1. 来自 W3School 的 SQL 快速参考.可以打印它,以备日常使用. SQL 语句 语句 语法 AND / O ...

  5. pytorch中的学习率调整函数

    参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供 ...

  6. 阶段5 3.微服务项目【学成在线】_day09 课程预览 Eureka Feign_08-课程预览技术方案

    3.2.1 技术需求 课程详情页面是向用户展示课程信息的窗口,课程相当于网站的商品,本页面的访问量会非常大.此页面的内容设 计不仅要展示出课程核心重要的内容而且用户访问页面的速度要有保证,有统计显示打 ...

  7. 【转】python selenium2 中的显示等待WebDriverWait与条件判断expected_conditions举例

    #coding=utf-8 from selenium import webdriver from selenium.webdriver.common.by import By from seleni ...

  8. 【418】C语言ADT实现Quack(stack+queue)

    quack.h #include <stdio.h> #include <stdlib.h> #include <assert.h> typedef struct ...

  9. 【408】C函数中的ADT

    类似类的形式 boardADT.h:所有的宏.声明等部分写在这里 boardADT.c:只需要 #inclue "boardADT.h",不需要 include 其他系统头文件,然 ...

  10. html5调整音频音高

    var audioSrc = 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/1715/the_xx_-_intro.mp3'; function buff ...